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Cremers, Zheng Lu, Ľuboš Pástor, Min Zhu, and seminar participants at the Western Finance
Associate (WFA) meetings in Whistler, Canada. We thank Martijn Cremers for supplying us with
the data on active share. All errors are our own.

Electronic copy available at: https://ssrn.com/abstract=2990737



1 Introduction

Are there decreasing returns to scale in the asset management business? If yes, can
we identify the managers that get greedy and take more assets than they can handle
and the others that resist the temptation to dilute investor returns? Are investors
able to sort this out and invest accordingly? The answers to these questions have
profound implications for the fund management business. Currently, even the most
basic question (decreasing returns to scale) is unanswered due to conflicting findings.
For instance, while Chen et al. (2004) document decreasing returns to scale for mutual
funds using Fama-MacBeth regressions, Pastor, Stambaugh and Taylor (PST, 2015)
find insignificant fund-level decreasing returns to scale using a fixed effects panel
regression approach.1

We argue that many challenges we face when evaluating mutual fund decreasing
returns to scale are similar to those faced by the development economics literature
that studies cross-country income growth. Borrowing insights from this literature,
we propose a new structural approach (i.e., a random coefficient model) that features
heterogeneous decreasing returns to scale, while at the same time permitting the
inference on the effect population.

When evaluating the impact of scale, we pay particular attention to the bias of
the OLS estimate when unexpected fund returns and the change in fund size are
contemporaneously positively correlated, i.e., the Stambaugh (1999) bias. PST and
Zhu (2018) show the presence of Stambaugh bias in a panel regression setup and
propose methods to adjust for this bias. We show that our framework is much less
affected by the Stambaugh bias. In particular, instead of using the individual fund size
as a portion of the equity market as in PST, we first adjust individual fund size by the
industry size, capturing the percentage wealth of a fund relative to the industry. We
argue that our metric, by purging out variation in industry size, is a more intuitive
measure of individual fund size. Additionally, in contrast to the fixed effects OLS
framework in PST, our random coefficient model applies a different weighting scheme
to the cross-section of funds. It underweights information provided by funds with a
smaller sample size, for which the Stambaugh bias is particularly severe. Similar to
PST, we also include in our regression industry size (divided by the overall wealth of
the equity market) as a separate explanatory variable. We show through simulations
that our estimators on both measures of scale (i.e., industry size and individual fund
size) are largely unbiased and perform well when the data generating process (DGP)
of the simulated data resembles the DGP of the actual data.

1Other recent papers that examine decreasing returns to scale include Pástor and Stambaugh
(2012), Berk and van Binsbergen (2015), Zhu (2018), Magkotsios (2018), Pástor, Stambaugh, and
Taylor (2020), van Binsbergen, Kim, and Kim (2020), and Dahlquist, Ibert, Wilke (2021), and
Harvey, Liu, Tan, and Zhu (2021).
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Our results point to a large impact of scale at the individual fund level. In partic-
ular, for an average fund in the cross-section that doubles its size relative to industry
in one year, its alpha drops by around 20bp per annum. The impact of scale is
significant both statistically and economically. We reconcile our finding with PST,
who document a much smaller and insignificant impact of individual fund scale using
a similar dataset. First, our definition of fund size contributes to the difference in
results. While PST, by measuring scale with the dollar TNA (adjusted for market
equity), try to estimate the impact on alpha per unit change in dollar TNA, our
definition of scale allows us to estimate the impact on alpha per percentage change in
dollar TNA (controlling for the change in industry size). Given the extreme differ-
ences in the magnitude of the dollar TNA in the cross-section, we think that our way
of measuring scale has some advantages in that it helps standardize the magnitudes of
the cross-section of the response coefficients to a change in scale, allowing us to pool
information from the cross-section to accurately estimate the impact of scale on an
average fund.2 Second, our structural approach automatically draws less information
from funds with a short return history, which are precisely the ones that are more
affected by the Stambaugh bias.

The strong evidence we find on individual fund scale therefore lends considerable
support to the Berk and Green (2004) model. It is also consistent with recent papers
that estimate the impact of scale based on alternative research designs and find a
significant impact of individual fund scale, such as Golez and Shive (2015), Zhu
(2018), and McLemore (2019). Different from these papers, our framework provides
a systematic approach to evaluate the impact of scale by allowing for fund fixed
effects, and cross-sectional heterogeneity in the response to scale and controlling for
fund specific exposures to benchmark risk factors. It therefore can potentially provide
a more accurate measure of the impact of scale.

We also find a significant impact of industry size, consistent with PST. We esti-
mate that a 1% increase in industry size (at the monthly level) implies a 5bp drop in
alpha (per annum) for the average fund. Our estimate of the impact of industry-level
scale is therefore higher but similar in magnitude to what PST find. In addition,
thanks to our framework that allows heterogeneous loadings on scale, we discover an
interesting U-shaped pattern for the time evolution of the impact of industry size.
We argue that this U-shaped pattern is driven by the interaction between two effects:
the dilution effect (new capital dilutes existing capital) and the diminishing alpha
effect (the profitability of investment ideas deteriorating through time). Our finding
has important implications for the overall capacity of the fund industry.

Equipped with our model, we construct long-short portfolios based on our fund-
specific estimates for the degree of decreasing returns to scale. Exploiting decreasing
returns to industry scale, a long-short portfolio that takes a long (short) position in
funds with a lower degree of decreasing returns to scale generates an economically

2Indeed, we also find that the impact of individual fund scale is roughly homogeneous across
different size groups, further supporting our regression setup.
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significant positive alpha, controlling for fund size and past performance. Our result
highlights the importance of identifying the differential exposure to industry size
for the cross-section of funds, making it a profitable strategy to take a long (short)
position in funds that are less (more) sensitive to industry growth.

Turning to fund level decreasing returns to scale (i.e., the log of the fund’s TNA
divided by the size of the industry), we find that, contrary to the case for industry level
decreasing returns to scale, a long-short portfolio that takes a long (short) position in
funds with a higher (lower) degree of decreasing returns to scale generates a large and
positive alpha. To interpret this finding, we study the relation between decreasing
returns to scale and future fund flows. We find that the degree of decreasing returns
to scale predicts future fund flows, controlling for variables (e.g., past performance)
that are documented by the existing literature. Moreover, decreasing returns to scale
is able to explain the convex relation between past performance and future fund flows:
holding past performance constant and assuming it is positive, funds that display the
lowest level of decreasing returns to scale attract a disproportionately large amount
of capital. Therefore, investors respond to decreasing returns to scale by rewarding
funds with a lower degree of decreasing returns to scale with much more capital,
which reduces the performance of these funds in the future. This explains our results
on portfolio sorts based on fund level decreasing returns to scale.

We interpret our findings in the context of theoretical models such as Berk and
Green (2004). Our results lend considerable support to Berk and Green in two as-
pects. First, we document a significant impact of decreasing returns to scale, both
at the industry level and at the individual fund level. Second, we find that investors
favor funds with a low degree of decreasing returns to scale, which is consistent with
Berk and Green’s main insight in that, since investors supply funds competitively,
more capital should flow to funds that are better at absorbing new capital without
reducing performance, that is, funds with a lower degree of decreasing returns to
scale. However, our results on portfolio sorts using fund level decreasing returns to
scale also suggest that investors allocate an excessive amount of capital to funds with
a low degree of decreasing returns to scale, to the extent that these funds perform
worse in the future than funds with a high degree of decreasing returns to scale.

Finally, the fact that the long-short strategies we construct produce excess returns
validates the basic assumptions for our estimation framework, that is, the degree of
decreasing returns to scale is both fund specific and persistent.

Our paper is organized as follows. In the second section, we provide an economic
foundation for our model by drawing on the development economics literature. In
the third section, we propose a new econometric framework to estimate the impact
of scale and discuss a comprehensive simulation study. In the fourth section, we
discuss the data we use and present summary statistics. In the fifth section, we show
our main results on the estimation of the impact of scale. In the sixth section, we
present some additional results, including the evaluation of the time-varying impact
of scale and the construction of profitable investment strategies that exploit the cross-
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sectional difference in resisting decreasing returns to scale. Some concluding remarks
are offered in the final section.

2 Economic Foundation

We provide a new framework to evaluate the relation between scale and performance.
While (dis)economies of scale has been the focus of several theoretical papers on
investment management (e.g., Berk and Green, 2004, Pastor and Stambaugh, 2012),
we still lack a full-fledged theory that can describe the dynamics of the cross-section
of fund returns. In contrast, there is a large literature in development economics
where macroeconomic models attempt to explain cross-country income growth. Our
strategy is to borrow some of the insights from the growth literature, which, in many
ways, faces similar challenges.

Admittedly, important differences exist between the two strands of research. For
example, individual funds are better treated as micro units while countries are macro
units. While the Solow (1956) growth model provides a strong theoretical basis for
the empirical growth literature, we do not have such luxury in the realm of invest-
ment management. In addition, while the dependent variables in growth regressions
are well defined and readily available, alphas are usually unobservable, creating an
additional difficulty when evaluating the impact of amount of assets under manage-
ment. Despite these differences, by studying the evolution of growth regressions, we
learn important lessons on how growth econometrics accommodate both theoretical
concerns and empirical practice, shedding light on what is a good way to carry out
“scale” regressions.

More specifically, we make three modeling choices motivated by the development
economics literature. We provide a summary of these choices below and discuss them
in detail in Appendix A.

First, an important strand of growth regressions use country fixed effects to allow
for time-invariant idiosyncratic growth components.3 In our context, as pointed out
by PST, the use of fund fixed effects allows us to identify the impact of scale through
the time-series dynamics, which helps address the endogeneity concern that arises
when performing a cross-sectional regression of fund alpha on fund size because funds
with a large size are more likely to fall into capable hands. We propose a dynamic
panel regression approach that allows for fund fixed effects.

Second, one benefit of having the Solow neo-classical growth model to guide em-
pirical explorations is that it guarantees that all variables are properly scaled, so
regression coefficients correspond to the structural parameters in the model and have
straightforward economic interpretations. Although we do not have such a benchmark

3See, e.g., Islam (1995).
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model for fund size and returns, we strive to achieve the same objective by properly
scaling variables related to fund size. In particular, we introduce a new measure
for fund size—defined as a fund’s total net assets (TNA) relative to the size of the
fund industry—and advocate taking a logarithmic transformation of such a measure
in our regression model.4 We show our measure helps standardize the cross-section
of funds that have vastly different levels of size and allows a comparable economic
interpretation of the regression coefficients in scale regressions.

Third, and most importantly, we follow the more recent growth literature by build-
ing a structural model that allows heterogenous regression coefficients in scale regres-
sions for the cross-section of funds.5 We believe parameter heterogeneity is important
because, just as with manager skill, the ability of a manager to resist decreasing re-
turns to scale should also be manager specific. Besides capturing heterogeneity, our
framework also provides estimates for the cross-sectionally averaged impact of scale,
making it possible to interpret the impact of assets under management in general.

Distilling the insights of the growth literature, we propose a random coefficient
framework to evaluate the impact of economies of scale on fund performance. Our
framework is not specific to scale regressions. It can be used in a general context
to evaluate cross-sectional alpha prediction models. Given the inconsistent results in
the literature,6 our dynamic panel regression framework may be useful in resolving
many unanswered questions.

Our framework builds on the insights of the standard random effects panel regres-
sion model. As shown in Searle, Casella, and McCulloch (1992), effects should be
random if there is interest in the underlying population. Stoker (1993) also points
out that effects should be treated as random if one wishes to make a statement about
macrorelationships based on micro estimates from a subpopulation of data. Stoker’s
insight seems particularly relevant for our application since we only have partial cov-
erage of the universe of mutual funds and the TNA’s of most funds are very small
relative to the GDP so it makes more sense to treat them as micro units than macro
units. While our framework allows heterogeneous fund loadings on an alpha predic-
tor, a population perspective (i.e., aggregating the fund specific coefficients) should
help us understand the overall economic impact of a predictive variable. Moreover,
a refined inference on the distribution of loadings aids the inference on individual
funds, which is often difficult given the high level of noise and the limited sample size
at the individual fund level.

Our random coefficient framework parametrically models the population of re-
gression coefficients, thereby extending the standard random effects panel regression

4Besides the literature on economic growth, see Backus, Kehoe, and Kehoe (1992) for another
application that introduces a similar measure for the scale of the economy.

5See, e.g., Kevin, Pesaran, and Smith (1998), Durlauf, Kourtellos, and Minkin (2001), Banerjee
and Duflo (2003), and Phillips and Sul (2007).

6See Jones and Mo (2021) for a summary of proposed variables that help predict fund alphas
and the out-of-sample evaluation of their performance.
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model. The advantage is that, unlike the standard random effects model, we are
able to make inference on individual funds by utilizing information from the loadings
population. This is important as it allows us to identify fund managers that exercise
discipline and resist diseconomies of scale. Our framework is also different from pa-
pers in the growth literature that incorporate parameter heterogeneity (e.g., Banerjee
and Duflo (2003), Durlauf, Kourtellos, and Minkin (2001), and Kevin, Pesaran, and
Smith (1998)). While these papers explicitly model parameter heterogeneity through
instrumental variables, our framework does not rely on pre-specified instruments (see
Solow (2001)). We only use funds’ return time-series to identify the impact of an alpha
predictor. Phillips and Sul (2007) is an exception from the growth literature that also
does not rely on pre-specified instruments to model parameter heterogeneity. While
they focus on the time-series convergence of the cross-sectional distribution of the
loadings on independent variables, our framework uses a time-invariant distribution
to model the cross-section of loadings on an alpha predictor.

Equation-by-equation OLS is often used to assess alpha predictability or the tim-
ing ability of funds, being it market timing or liquidity timing.7 Statistical evidence
on alpha predictability or timing ability is often established by showing that a certain
fraction of parameter estimates for individual funds are statistically significant. We
show that this is an ill-advised practice. The limited sample size for most funds makes
the inference for individual funds unreliable. In addition, given the large cross-section
of funds, certain funds may exist that generate extreme test statistics that appear to
exceed the significance threshold, even after imposing a multiple testing threshold.
However, such funds may tell us little about the overall economic impact of a predic-
tive variable as the variable may have a negligible impact on the average fund. On
the other hand, it is also inappropriate to discard funds that generate extreme esti-
mates as this may bias our estimate of the effect population. Our framework provides
a structural approach to draw information from the cross-section to make inference
on a particular fund, while minimizing the extreme and implausible estimates for
certain funds. Harvey and Liu (2018) apply a similar idea to make inference on the
underlying population of alphas.

7See, e.g., Treynor and Mazuy (1966), Henriksson and Merton (1981), Ferson and Schadt (1996),
Chen et al. (2013).
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3 Method

3.1 Model

Suppose fund excess returns can be decomposed as:

ri,t = αi +
L∑
`=1

γi,`gi,`,t︸ ︷︷ ︸
αi,t

+
K∑
j=1

βijfj,t︸ ︷︷ ︸
Fi,t

+εi,t, i = 1, . . . , N ; t = 1, . . . , T, (1)

where ri,t is the excess return for fund i in period t, αi is fund i’s time-invariant alpha,
γi,` is fund i’s loading on characteristic ` (i.e., gi,`,t which, in general, is fund specific
and therefore depends on subscript i), βij is fund i’s time-invariant risk loading on the
j-th factor fj,t, and εi,t is the residual. For simplicity, we assume a balanced panel.
But this is not required for either the exposition or the estimation of our model.

Our formulation offers a three-way decomposition of fund returns: αi,t is the time-
varying alpha that could depend on fund characteristics, Fi,t captures the exposure
to benchmark risk factors, and εi,t is the residual noise component.8

Next, we need to determine the set of parameters that we want to focus on.
These will be the parameters that are treated as random effects, whose estimation
will draw on information from both the cross-section and time-series. Given our focus
on fund characteristics (i.e., gi,`,t) that help predict alphas, we assume that fund i’s
loading vector on fund characteristics (i.e., [γi1, γi2, . . . , γiL]′) is randomly drawn from
a multivariate probability distribution that is parameterized by Λ.

Harvey and Liu (2018) treat funds’ unconditional alphas as random effects and
seek to estimate the underlying alpha distribution. In this paper, we focus on fund
characteristics and assume that both funds’ time-invariant alphas (i.e., αi) and betas
(i.e., βij) are fixed effects in our main specification. To the extent that treating either
time-invariant alphas or betas as random effects may improve our model estimates,
we also explore alternative model specifications.

To write down the likelihood function of the model, we introduce some notation.
Let Ri = [ri,1, ri,2, . . . , ri,T ]′ be the vector of excess returns for fund i and R =
[R1, R2, . . . , RT ]′ be the panel of excess returns. Let βi = [αi, βi1, βi2, . . . , βiK ]′ be the
vector of the time-invariant alpha and risk loadings for fund i and B = [β1, β2, . . . , βN ]
be the panel of time-invariant alphas and risk loadings. Notice that for simplicity we
treat αi as the risk loading on a constant of one. Let γi = [γi1, γi2, . . . , γiL]′ be the

8Although we do not allow time-varying betas in our presentation in Eq. (1), time-varying
betas as captured by instrumented variables can be straightforwardly modeled in our framework by
introducing interactions between benchmark factors and instrumented variables.

7

Electronic copy available at: https://ssrn.com/abstract=2990737



vector of loadings on characteristics for fund i and Γ = [γ1, γ2, . . . , γN ] be the panel
of loadings. Let the standard deviation for the residuals of fund i be σi and we collect
the cross-section of residual standard deviations into Σ = [σ1, σ2, . . . , σN ]′.

Given the model structure, the joint likelihood function (i.e., L(R|Λ,B,Σ)) can
be written down as:

L(R|Λ,B,Σ) =

∫
L(R,Γ|Λ,B,Σ)dΓ (2)

=

∫
L(R|Γ,B,Σ)L(Γ|Λ)dΓ, (3)

where L(R|Γ,B,Σ) is the conditional likelihood function assuming all model param-
eters are known and L(Γ|Λ) is the density function of the loadings on fund char-
acteristics. Hence, the joint likelihood function integrates out the loadings on fund
characteristics from the conditional likelihood function (i.e., L(R|Γ,B,Σ)).

Assuming that the residuals are independent across funds and across time, the
joint likelihood function can be written as:

L(R|Λ,B,Σ) =

∫ N∏
i=1

L(Ri|γi, βi, σi)L(γi|Λ)dγi, (4)

=
N∏
i=1

∫
L(Ri|γi, βi, σi)L(γi|Λ)dγi. (5)

Our goal is to estimate the structural parameters (i.e., Λ) that govern the popula-
tion of loadings on characteristics as well as the parameters that govern fund return
dynamics, e.g., βi and σi. Notice that the only difference between the likelihood func-
tion in our model and the likelihood function for the traditional equation-by-equation
OLS (i.e.,

∏N
i=1 L(Ri|γi, βi, σi)) is that in our model, the likelihood for each fund’s

return dynamics (i.e., L(Ri|γi, βi, σi)) is weighted by the density function of γi (i.e.,
L(γi|Λ)). Hence, we draw on information from the cross-sectional distribution of γi
to make inference on a particular fund. This helps alleviate the small sample problem
that we often face when evaluating alpha predictors on a fund-by-fund basis.

To have a fully specified likelihood function, we further assume that both the
innovations in fund returns and the cross-sectional distributions of the elements in
γi follow normal distributions. In particular, for each element in γi (e.g., γi,`, ` ∈
{1, 2, . . . , L}), we assume that it follows a normal distribution with its own mean
µγ,` and standard deviation σγ,`. For simplicity, we also assume that elements in γi
are drawn independently from their respective distributions ex ante. However, ex
post, the individual fund data may as well suggest correlations among the loadings as
the independent variables for the fund (i.e., fund characteristics) may be correlated
through time. Notice that the assumption of a normal distribution on loadings is not
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necessary in our framework. We can generalize it by using more flexible distributions
such as a Gaussian-mixture distribution. However, for our application, we think a
normal distribution suffices as it succinctly captures the average and dispersion of the
loadings population.9

Notice that we derive our model estimates under residual independence. How-
ever, residual independence is not needed to guarantee the consistency of our model
estimates. As we show in simulations, our estimation produces consistent parameter
estimates even when residuals are correlated in the cross-section. However, the level
of estimation uncertainty becomes higher when residuals are correlated. We evaluate
the impact of residual correlation in detail in our simulation study.

3.2 Estimation Procedure

We rely on the well-known Expectation-Maximization (EM) algorithm to efficiently
estimate our model. The idea of the algorithm is to treat parameters that follow a
certain population structure (e.g., γi’s in our framework) as missing observations and
iteratively update these missing observations and other model parameters. Harvey
and Liu (2018) and Chen, Cliff, and Zhao (2015) apply the EM algorithm to make in-
ference on the underlying alpha population, providing a new approach to performance
evaluation.10 Our innovation in this paper is to apply the EM algorithm to uncover
the underlying distribution of the loadings on alpha predictors, offering a systematic
approach to study the loadings population (e.g., what is the impact of industry size
on an average fund) as well as to refine the estimates of individual loadings, which
are difficult to estimate using fund-specific information alone.

The algorithm, adapted to our framework, proceeds as follows.

Step I Let G = {Λ,B,Σ} denote the collection of parameters to be estimated. We
start at some parameter value G(0). A sensible initial choice is the collection of
parameter estimates obtained through the equation-by-equation OLS. In partic-
ular, the equation-by-equation OLS directly generates estimates for B and Σ as
well as the cross-section of loadings on characteristics. The mean and standard
deviation estimates for the cross-section of loadings then provide estimates for
parameters in Λ.

Step II After the k-th iteration of the algorithm, suppose the model parameters are
estimated as G(k) (‘k′ is the generic indicator for the round of iteration. Note

9Harvey and Liu (2018) show the necessity of using a Gaussian-mixture distribution to capture
the non-normal features of the alpha population. Different from their framework, we do not attempt
to model the alpha population. As such, alphas in (1) are freely estimated and are not subject to
any population distribution.

10See Harvey and Liu (2018) and the references therein for a detailed description of the EM
algorithm.
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we start from k = 0 as in Step I.). We calculate the expected value of the log
complete likelihood function, with respect to the conditional distribution of Γ
given the current parameter values and R, i.e.,

L(G|G(k)) = EΓ|R,G(k) [logL(R,Γ|G)], (6)

= EΓ|R,G(k) [
N∑
i=1

logL(Ri|γi, βi, σi)L(γi|Λ)]. (7)

Step III We maximize L(G|G(k)) and update the parameter estimates as G(k+1).

Step IV With the new parameter estimate G(k+1), we return to Step II to start the
(k+1)-th iteration. We iterate between Step II and Step III until the parameter
estimates converge.

In our setup, fortunately, we have closed-form formulas for each step of the algo-
rithm, as we show in Appendix B.

3.3 Model Discussion

Our model features the evaluation of alpha predictors by drawing on cross-sectional
information. At the same time, we allow fund-specific loadings to capture the het-
erogeneity of the impact of an alpha predictor. Both features of our model make
it appealing for empirical applications. For example, when measuring economies of
scale, we would like to know the impact of economies of scale for an average fund in
the cross-section. To have an estimate of this impact, we should look at the under-
lying effect population, instead of the collection of noisy equation-by-equation OLS
estimates, to make inference. Our model directly targets the estimation of the effect
population. On the other hand, when individual funds’ responses to an alpha predic-
tor is of interest (e.g., we may want to identify funds that have the ability to resist
decreasing returns to scale), we would like to have a good estimate of the impact of
the alpha predictor for each individual fund. Such an estimate is impossible using
fund-specific information alone, given the limited time-series data for many funds in
the mutual fund sample. Our model provides an estimate for an individual fund’s
response to the alpha predictor by drawing on information in the cross-section. Sim-
ilar ideas have been applied in Jones and Shanken (2005), Chen et al. (2015), and
Harvey and Liu (2018) to estimate fund alphas.

To appreciate the two features of our model, we later show through simulations
that the equation-by-equation OLS estimates of the mean loadings on the two metrics
for scale, especially the metric on individual fund scale, are not only substantially
more noisy than our model’s estimates, but are also severely biased. Moreover, the
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equation-by-equation OLS generates even more noisy estimates for the loadings of
individual funds than the estimates for the mean loadings. In contrast, by using
information in the loadings population, our model provides much more precise and
economically meaningful estimates for the loadings of individual funds.

To explore how our method works, we take a closer look at the steps of our
estimation procedure. Assuming the model parameters are known, in Step II of
the EM algorithm, we estimate the loadings on fund characteristics for each fund.
In particular, when there is only one alpha predictor, the estimated loading on the
single fund characteristic follows a normal distribution with mean (mi) and variance
(vi), where mi and vi are given by:

mi ≡
(
∑T

t=1 gi,t(ri,t − β′ift)/
∑T

t=1 g
2
i,t)(

∑T
t=1 g

2
i,t/σ

2
i ) + µγ/σ

2
γ∑T

t=1 g
2
i,t/σ

2
i + 1/σ2

γ

, (8)

vi ≡
1∑T

t=1 g
2
i,t/σ

2
i + 1/σ2

γ

. (9)

Hence, the variance vi is a harmonic average of the usual time-series variance (i.e.,
σ2
i /

∑T
t=1 g

2
i,t) and the cross-sectional variance σ2

γ. As a result, it takes into account
both the time-series and the cross-sectional uncertainty in estimating a fund’s loading
on the characteristic. At the same time, the mean estimate mi weights the time-
series estimate (i.e.,

∑T
t=1 gi,t(ri,t − β′ift)/

∑T
t=1 g

2
i,t) and the cross-sectional estimate

(i.e., µγ) by their respective precisions (i.e., the reciprocal of the variance), allowing
us to pool information from the cross-section to refine the time-series estimate of
a fund’s loading on the characteristic. Note when T becomes large,

∑T
t=1 g

2
i,t/σ

2
i

dominates µγ/σ
2
γ, implying that our model will assign a high weight to fund i’s time-

series information. From a population perspective, funds with a longer time series
are weighted more heavily in inferring the population parameters. This insight is
important in understanding our model’s superior performance in the simulation study.

After we obtain an estimate for each fund’s loading on the characteristic, in Step
III of the EM algorithm, we re-estimate the other OLS parameters (i.e., fund alpha,
loadings on benchmark factors, and residual standard deviation) for each fund as well
as parameters that govern the cross-section of loadings on the characteristic (i.e., Λ).
We show Appendix B that the MLEs for both types of parameters have closed-form
solutions and appeal to intuition.

When there are multiple characteristics, the formulas in Step II are more complex.
In particular, the loadings on characteristics for a particular fund are not independent
of each other since the time-series of characteristics are in general correlated. However,
the basic intuition for the case with a single characteristic still applies to the case
with multiple characteristics. We also derive analytical expressions for the latter in
Appendix B.
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In essence, the EM algorithm iteratively updates missing observations (i.e., the
cross-section of loadings Γ) and model parameters G, which include the OLS pa-
rameters other than the loadings on characteristics and parameters that govern the
cross-sectional distributions of the loadings. In particular, in Step II, given our current
estimates of the model parameters (i.e., G(k)), we back out the missing observations
in Γ. Subsequently, fixing the missing observations at their estimates in Step II, we
update the model parameters in G in Step III and obtain a new set of model pa-
rameters (i.e., G(k+1)). We iterate between Step II and Step III until the structural
parameters in G converge.

3.4 Measuring Scale

We use two measures of scale.

The first metric is industry-level scale, which we denote as IndusSize. At the
beginning of each month, we add up the TNA’s across funds and then divide by the
aggregate market capitalization of the stock market (AggStock). Our metric is the
same as the one used in PST, who are the first to examine the impact of industry-
level scale. IndusSize is the weight of the mutual fund industry relative to the entire
equity market.11

The other metric is fund-level scale, which we denote as FundSize. We construct
it in several steps. First, at the beginning of each month, we divide a fund’s TNA by
the aggregate TNA of the mutual fund industry, creating a variable that measures the
scale of an individual fund relative to the size of the industry. Second, we take a log
transformation of the relative scale metric that is defined in the previous step, creating
the time-series of the log of the relative size for each fund. Finally, we subtract the
first observation of this time-series from the entire time-series, essentially adjusting
the time-series for the initial fund size. The time-series of FundSize is then taken to
be this adjusted time-series of the log of the relative scale of each fund.

There are several reasons for us to define FundSize in this way.

First, we believe it is important to control for industry size while measuring fund-
specific scale. Intuitively, a $100 million fund in 1991 (the beginning of our sample)
should be treated differently from a $100 million fund in 2011 (the end of our sample)
given the mutual fund industry has grown substantially during this period. Notice
that this difference is not picked up by the industry scale variable (i.e., IndusSize)
because IndusSize is a single time series and is not fund specific. Suppose that
the aggregate equity market increases tenfold and that the aggregate industry size
is a constant proportion of the aggregate equity market throughout our sample (i.e.,

11To be consistent with PST, we do not take the log of IndusSize. Notice that, different from
the case for fund size, we do not need to take the log of IndusSize since IndusSize is the same for
every fund in the cross-section, allowing the loadings population to be homogenous.
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IndusSize is a constant). Suppose that the $100 million fund stays at $100 million
throughout our sample. Then, intuitively, the fund’s impact on both the fund industry
and the equity market at the end of our sample becomes one-tenth of its impact at
the beginning of our sample, effectively reflecting a shrinkage of its relative size. In
addition, since IndusSize remains constant, it cannot pick up this change in impact
and the associated change in alpha for this particular fund.

On the other hand, suppose that the size of the equity market stays constant ($10
trillion) and the industry size changes from one trillion to two trillion. Suppose a
fund has a constant size of 100 million throughout. Should we consider the size of
the fund as constant as in PST (since the size of the equity market stays constant),
or being smaller as in our definition? First of all, since the industry size doubles
relative to the equity market, due to decreasing returns to scale at the industry
level, the additional one trillion dollars of assets may earn a lower return compared
to the initial one trillion, reducing the overall profitability of the industry. This is
the industry effect that is captured by IndusSize, as defined in PST and our paper.
Purging out the industry effect, the additional one trillion dollars should be considered
as equally profitable as the initial one trillion. However, since the equity pool (i.e.,
equities that are managed by the industry) gets larger, the effective size of the fund
should decline, much in the same way as how PST define IndusSize as the industry
size relative to the size of the equity market. This decline in effective size, together
with the assumption of decreasing returns to scale at the fund level, implies better
performance for the fund, which is consistent with the intuition that the combination
of two equally profitable sets of equities should benefit the fund in the original set,
despite the increased competition from new entrants generated by the additional one
trillion dollars. This is similar to the idea that investing internationally benefits
investors from all the countries.

To put it differently, if we apply a log transformation to PST’s definition of
FundSize, we can decompose it as

log
TNAi,t
MKTt

= log
TNAi,t
ITNAt

+ log
ITNAt
MKTt

,

where MKTt is the size of the equity market at time t and ITNAt is the size of the
industry at time t. Notice that ITNAt

MKTt
is simply IndusSize. Hence, our measure of

FundSize (i.e., log
TNAi,t
ITNAt

) purges out the variation of IndusSize from PST’s defini-
tion of FundSize, allowing us to evaluate the impact of fund size that is independent
of industry size.

Overall, compared to PST, we think our definition of FundSize can potentially
better disentangle the impact of industry size and fund size on fund performance.

Another benefit of scaling an individual fund’s size by the industry size, from a
technical perspective, is that innovations in a fund’s TNA are no longer mechanically
related to its return, alleviating the finite-sample bias when regressing fund returns
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on lagged TNA, as shown in PST. Additionally, our framework allows us to pool
information from the entire cross-section of funds to estimate the impact of fund size,
further reducing the reliance on any particular fund’s time-series to make inference.
As we show in our simulation study, our estimation procedure performs well, produc-
ing essentially unbiased estimates for the means of the population of loadings on the
two scale proxies (i.e., IndusSize and FundSize).

It is also important to take a log transformation of the industry-adjusted fund’s
TNA, as we discussed previously. This ensures that the regression coefficient on
FundSize represents the change in alpha if the log of the industry-adjusted TNA
goes up by 100% (which is equivalent to a growth of 171.8% in a fund’s TNA since
log(2.718) = 1), regardless of the initial level of the TNA. Considering the very large
differences in the levels of TNA for the cross-section of funds, the log transformation
is necessary to obtain roughly homogeneous regression coefficients on FundSize in
the cross-section, allowing us to pool information from the cross-section of funds to
accurately estimate the impact of FundSize.

Finally, our last step of defining FundSize (i.e., adjusting the time-series of the
log of the industry-adjusted fund scale for its initial observation) is not essential for
our results as adjusting the time-series of regressors by a constant has no impact on
the estimation of the regression coefficient. However, it allows us to interpret the
alpha estimate as the estimate that corresponds to the initial TNA of the fund. We
adopt this to standardize our interpretation of funds’ alphas.

To summarize, our analysis will examine the impact of two scale metrics on
fund performance. Using the our notation from previous sections, we have gi,1,t =
IndusSizei,t and gi,2,t = FundSizei,t.

3.5 A Simulation Study

We perform a comprehensive simulation study to examine the performance of our
model, paying particular attention to the finite-sample bias issue in Stambaugh (1999)
and PST. We provide details of the simulation study in Appendix B. Below we sum-
marize the main findings of our simulation study.

Several features mark our simulation study. First, we allow heterogeneous load-
ings on characteristics as well as factor returns to provide a realistic data generating
process. Second, we explicitly model the endogenous relation between fund size and
fund returns. Third, heterogeneous loadings on characteristics (in particular, the two
scale variables) are drawn from normal distributions. Our goal in the estimation is
to recover both population parameters (i.e., population means and variances) and
fund-level parameters. Fourth, we also allow cross-sectional dependence in fund id-
iosyncratic risks as well as factor returns to study how these features in the data
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affect our estimation, even though our estimation procedure does not take residual
dependence into account.

Our main results can be summarized as follows. While the usual equation-by-
equation OLS is shown to be severely biased when estimating fund-level decreasing
returns to scale, our model performs much better in estimating the population pa-
rameters: both the mean and the variance for the loading population are estimated
with a substantially lower bias compared with the equation-by-equation OLS. We dis-
sect our results further by examining the performance of our model across different
groups of funds as sorted by sample length.12 We find, as expected, funds that exist
for a shorter period of time display a larger bias in the estimation. However, these
funds are precisely the ones that are downweighted in our random effects framework,
making our estimator largely unbiased when estimating population parameters.

We highlight two factors that contribute to the better performance of our model
compared with PST. First, our definition of industry-adjusted individual fund size
dampens the mechanical contemporaneous correlation between a fund’s return and
its FundSize, alleviating the Stambaugh bias. Second, our random effects framework
automatically (and optimally) overweights funds with a larger number of observations,
further mitigating the small-sample-induced Stambaugh bias.

4 Data

We obtain the mutual fund data from the Center for Research in Security Prices
(CRSP) Mutual Fund database. We focus on active, domestic equity funds covering
the 1991-2011 period. We start from 1991 as many funds do not have monthly
updates on their TNA’s before 1991. We end at 2011 to facilitate our comparison
with the results in PST. To mitigate omission bias (Elton, Gruber and Blake, 2001)
and incubation and back-fill bias (Evans, 2010), we apply some screening procedures.
We only keep funds that have a TNA above $10 million and have more than 80% of
their holdings in stocks. We also combine multiple share classes. As we mentioned
before, we require that a fund has at least 18 non-missing monthly observations to
enter our test since our fund-level regression has six regressors. This leaves us with

12One may wonder whether estimates from equation-by-equation OLS are a strawman comparison
for our approach. While from a bias perspective methods such as Zhu (2018) should lead to a
better performance compared to the equation-by-equation OLS, the finite-sample Stambaugh only
constitutes a small fraction to the overall estimation uncertainty for the equation-by-equation OLS,
mainly because the equation-by-equation estimates, without using information from the population,
are highly noisy. As such, removing the Stambaugh bias from equation-by-equation OLS will not
have a large impact on estimation uncertainty. Our exercise, by comparing with the equation-by-
equation OLS, suffices to highlight two results: 1. Our estimates for the population parameters are
largely unbiased (similar to Zhu (2018)), whereas equation-by-equation OLS leads to severely biased
estimates; and 2. Equation-by-equation OLS also leads to much noisier estimates, regardless of bias
adjustment.
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3,623 mutual funds for the 1991-2011 period. We use the four-factor model in Fama
and French (1993) and Carhart (1997) as our benchmark model.

Figure 1 plots the time-series of industry size (as a proportion of the size of the
equity market) and the number of funds in our sample. Figure 2 shows the evolution
of the cross-sectional distribution of FundSize. There is a jump in the number of
funds and industry size in September 2008 as many funds in our database (exceeding
the $ 10 million size cutoff) start reporting returns right after the 2008 financial crisis
and hence enter into our sample.
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Figure 1: Industry Size and Number of Funds
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our regression analysis. A fund needs to satisfy two criteria to enter our analysis. First, it
needs to have an initial TNA of at least $10 million. Second, it needs to have at least 18
non-missing monthly observations for all variables in our regression analysis.
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Figure 2: Fund Size for the Cross-Section of Funds
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5 Results

5.1 Measuring Decreasing Returns to Scale

Table 1 reports the estimates for the parameters that govern the population of load-
ings on IndusSize and FundSize. In our framework, they can be used to measure
the impact of scale for an average fund in the cross-section.

To interpret the parameter estimates, let’s first provide some summary statistics
on IndusSize and FundSize.13 In our sample, the 50th and 90th percentile for the
monthly change in IndusSize are 0.43% and 1.5% per annum. For individual funds,
the 50th and 90th percentile for the monthly change in the industry-scaled TNA are
-1.3% and 86% per annum. Therefore, to have an apples-to-apples comparison, it
seems fair to compare the economic magnitudes of the impact of scale for a change of
1.5% per annum in IndusSize with a change of 86% per annum in FundSize, since
both changes happen with a probability of 10%.

Based on Table 1, for IndusSize, a 1.5% annual increase in IndusSize results
in a decrease in alpha of 0.08% (=0.0525 × 1.5%) per annum for the average fund.
For FundSize, an 86% annual increase in FundSize results in a decrease in alpha
of 0.18% (=log(1.86)× 0.283). Hence, although both IndusSize and FundSize have
an economically significant impact on fund alpha, the impact of FundSize is more
than twice as large as the impact of IndusSize.

Moreover, the impact of FundSize is estimated with a much higher precision
than the impact of IndusSize. As shown in Table 1, the 90% confidence band for
the mean loading on FundSize (relative to the magnitude of the point estimate) is
much narrower than the confidence band for the mean loading on IndusSize. Tak-
ing estimation uncertainty into account, the 90% confidence intervals for the impact
on alpha corresponding to the aforementioned changes in IndusSize and FundSize
are [−12.2bp,−3.8bp] and [−18.7bp,−16.8bp], respectively. Hence, in terms of the
lower bound of the impact of scale, the difference between FundSize and IndusSize
(i.e., −16.8bp vs. −3.8bp) is even more dramatic than the difference based on point
estimates.

13Summary statistics are available upon request.
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Table 1: Model Estimates

Parameter vector (Λ) for the estimated model. µγ and σγ are
the mean and standard deviation of the normal distribution from
which γi,1’s (γi,2’s) are drawn from. γi,1 and γi,2 are defined in
(C.1) and denote the loading on industry size (i.e., IndusSizet)
and fund size (i.e., FundSizei,t), respectively. ρ = 0 corresponds
to the specification where residual correlation is set at zero. “Em-
pirical ρ” corresponds to the correlation specification described in
Table B.2.

Loadings on IndusSizet Loadings on FundSizei,t
(γi,1 × 100) (γi,2 × 100)

µγ −5.253 −0.283

[p(5), p(95)] [−7.943, −2.585] [−0.359, −0.217]

(ρ = 0)

[p(5), p(95)] [−8.120, −2.452] [−0.302, −0.270]

(Empirical ρ)

σγ 77.341 0.284

[p(5), p(95)] [74.901, 79.327] [0.242, 0.346]

(ρ = 0)

[p(5), p(95)] [75.317, 78.031] [0.246, 0.303]

(Empirical ρ)
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To put our findings into context, we compare our results with PST. First of all,
there are important differences between PST and our framework that are unrelated
to the estimation of the impact of scale. For instance, while PST focus on fund
alphas relative to the index-based benchmark,14 we regress fund returns on benchmark
factors (in particular, the four-factor model). While PST argue that index-based
benchmarks better explain the cross-section of mutual fund returns,15 we believe that
it is important to control for standard risk factors to make sure that the impact of
scale we are picking up for FundSize corresponds to variations in FundSize that
are independent of the movements in standard risk factors. Another difference is our
choice of data. While PST use the cross-validated dataset that reconciles the CRSP
with Morningstar databases, we focus on the CRSP (with the same time sample),
similar to many existing papers on mutual fund research.

The differences in implementation aside, PST find a much smaller and insignificant
impact of FundSize. In particular, using their instrumental variables approach to
adjust for the Stambaugh bias, they estimate an annual change in alpha in the range of
1.3 to 2.5bp for a $100 million increase in fund size.16 In our sample, the median TNA
is $122 million, so a $100 million inflow corresponds to a 82% change in FundSize,
which would result in an annual change in alpha of 17bp, much higher than what
PST estimate.

As we discussed before, this difference in results is attributable to several reasons.
First, our definition of FundSize is different from PST’s definition. While PST’s
main specification uses the dollar TNA (divided by the size of the equity market),
we take the log transformation of the TNA divided by the size of the fund industry.
Simple as it is, this changes the interpretation of the regression coefficient: while PST
try to estimate the impact on alpha per unit change in dollar TNA, we are estimating
the impact on alpha per percentage change in TNA relative to the industry. Given
the very large differences in dollar TNA across funds, we believe our transformation
has the advantage of standardizing the magnitudes of the cross-section of regression
coefficients on scale, allowing us to pool information from the cross-section to estimate
the impact of scale for the average fund.

Second, while PST divide the dollar TNA by the size of the equity market, we
divide the dollar TNA by the size of the mutual fund industry. As we discussed exten-
sively in section 3.4, our definition allows us to purge out the variation of IndusSize
from PST’s definition, leaving us with a measure of FundSize that is independent of
the movement of industry size.

14A fund is matched with a Morningstar designated benchmark. Fund alphas are calculated
by simply subtracting the benchmark return from the fund return. There is no additional risk
adjustment.

15See Cremers, Petajisto, and Zitzewitz (2013).
16Applying PST’s approach as well as their variable definitions (but still using our benchmark

adjustment), we find an estimate of 3.5bp for a $100 million increase in fund size, which is roughly
consistent with PST’s estimate given the fund samples have some differences even though the time
sample is identical.
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Putting the interpretation of the definition of FundSize aside, one additional
benefit in using our definition of FundSize is that it helps kill the mechanical con-
temporaneous correlation between a fund’s return and the growth rate of FundSize,
alleviating the Stambaugh bias, as we discussed in the simulation study.

Lastly, our random coefficient framework has a different weighting scheme of in-
formation provided by the cross-section of funds than the fixed effects OLS model
used in PST. While PST equally weight the cross-section of funds, our model down-
weights information provided by funds with high residual standard deviations (as well
as those with shorter samples) as seen from (8) and (9), which include smaller funds
for which the inference on decreasing returns to scale should be more difficult. While
this difference in the weighting scheme may not lead to a difference in the estimation
of the population mean (as we shall see later in Table 5, the loadings on FundSize
are roughly homogenous across different size groups), it will have an impact on the
statistical significance of the population mean. As a result, while we find a nega-
tive and significant population mean for the impact of FundSize, PST estimate the
population mean to be negative but statistically insignificant.

Our estimate of the impact of IndusSize is similar in magnitude to what PST
find. For a 1.5% annual change in IndusSize, PST estimate a decrease in alpha
(per annum) of 4.9bp,17 which is similar in magnitude to our estimate of 8bp.18 The
difference between the estimates likely comes from the difference in the benchmark
models we use. While PST use index-based benchmarks, we use the four-factor model.
Our evidence suggests that the industry scale effect is even stronger after we purge
out the variations in standard risk factors.

Overall, we find strong evidence for the impact of scale at the individual fund
level, consistent Chen et al. (2004), Yan (2008) and Bris et al. (2007).19 In contrast
to these studies, our structural estimation framework that features fund fixed effects
allows us to make a precise statement about the impact of scale for the cross-section
of funds. We also find evidence consistent with the impact of scale at the industry
level, supporting the findings in PST.

17Based on Table 3 in PST, a 1.5% annual change in IndusSize results in a change of annual
alpha of 0.049% = (1.5%× 0.0326%).

18Applying PST’s approach (but using our benchmark adjustment), we find an estimate of 6.5bp
for a 1.5% increase in IndusSize, which is in the same ballpark as PST’s estimate.

19Zhu (2018) modifies the PST framework and shows how their narrative changes with her new
estimation technique. We confirm Zhu’s (2018) results by using a different framework. Different from
Zhu (2018), our model features a new industry-adjusted fund size definition and a random effects
model, both of which are important to drive our estimation results. Our heterogeneous-coefficient
model also highlights the large degree of heterogeneity in fund-level decreasing returns to scale,
which we later explore to predict future fund performance.
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5.2 Dissecting the Impact of Scale

5.2.1 The Heterogeneous Impact of Scale: Cross-section

Given that our framework allows for heterogeneous loadings on two measures of scale,
we are able to study how the impact of scale varies in both the cross-section and in
the time-series. We first focus on the cross-sectional evidence.

For each fund, we calculate the median level of FundSize, which proxies for
the average FundSize throughout the lifetime of a fund. We then group the cross-
section of funds into quintiles. Table 2 shows the average loadings on IndusSize and
FundSize for each group.20

For the loadings on FundSize, there does not seem to be much cross-sectional
variation. All loadings on FundSize fall closely around the population estimate, i.e.,
the mean loading for the normal distribution from which the cross-section of loadings
are drawn from. This, as we mentioned before, is attributable to the way we measure
FundSize. By using log TNA, we are measuring the impact of scale per percentage
change in a fund’s TNA. Therefore, in spite of the difference in the dollar TNA
across funds, the impact of scale seems homogenous across funds.

For the loadings on IndusSize, interestingly, we document a decreasing impact of
scale when the median FundSize is increasing. Hence, larger funds imply a milder
response to changes in industry-level scale than smaller funds. The difference in
impact of scale between large funds and small funds seems large from an economic
standpoint. In particular, the impact of industry-level scale for very small funds (i.e.,
bottom 20% in terms of median FundSize) almost doubles that for very large funds
(i.e., top 20% in terms of median FundSize).21

One possible explanation is to use the fact that small funds may trade illiquid
stocks and large funds focus on liquid stocks and execute in large blocks, as shown
in Chen et al. (2004) and Busse et al. (2016). Suppose the overall size of the fund
industry relative to the aggregate equity market doubles and this affects each type of
fund along the size spectrum proportionally (this assumes that there is no change in
the composition of small vs. large funds, which is largely the case for the post-2000
periods, see Figure 2). Under this assumption, small funds grow by 100%. However,
given the limited supply of small and illiquid stocks in the market, it becomes more
difficult to invest in such stocks. Small funds are forced to invest in large and liquid
stocks, which may not reflect their expertise. As a result, there is a decline in alpha.

20Alternatively, we can group funds into quintiles at each point in time based on the cross-section
of fund sizes. We calculate the average loadings for each quintile, and then take the time-series
average. Our results are similar.

21Note our random coefficients framework, by construction, assumes all loadings are continuous
and therefore non zero. We therefore do not perform hypothesis testing for each fund. See exten-
sive discussion in Harvey and Liu (2016) for the interpretation of model parameters in a random
coefficients model.
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In contrast, for large funds, even if their size also grows by 100%, since the market
has a much larger capacity for large and liquid stocks, they may still be able to find
new investment opportunities. As a result, they are not hurt as much as small funds,
implying a milder response to an increase in industry size than the response of small
stocks.22

Table 2: Impact of Scale: Cross-section

Impact of scale for the cross-section of funds. For each fund in our sample, we calculate its
median FundSize. We group funds into different groups based on their median FundSize,
each group covering 20% funds in our sample. We calculate the (cross-sectionally) aver-
aged mean loadings on IndusSize and FundSize (“Avg. Estimate”). “Std. Err.” reports
the standard error

Loadings on IndusSizet ×100 Loadings on FundSizei,t ×100

FundSize quintiles Avg. Estimate Std. Err. Avg. Estimate Std. Err.

Small <= 0.029 -8.699 2.931 -0.294 0.025
(20% of funds)

(0.029, 0.064] -5.711 3.067 -0.294 0.021
(20% of funds)

(0.064, 0.136] -4.970 2.451 -0.291 0.018
(20% of funds)

(0.136, 0.327] -4.955 2.790 -0.300 0.015
(20% of funds)

Large > 0.327 -4.615 2.237 -0.281 0.014
(20% of funds)

Overall -5.253 2.834 -0.283 0.016

22We do not think that this story is the only possibility. There are other plausible explanations.
More empirical work (possibly based on holdings data) can help us better identify the source of the
difference in the impact of industry size between small and large funds. We leave this to future
research.

24

Electronic copy available at: https://ssrn.com/abstract=2990737



5.2.2 The Heterogeneous Impact of Scale: Time-series

We next examine the time-series variation of the impact of scale. In particular, at
each point in time, we look at the cross-section of funds that are available. We obtain
the loadings of these funds based on our full-sample estimates. We then calculate
the cross-sectionally averaged loadings on IndusSize and FundSize for these funds.
Figure 3 plots the time-series of these cross-sectionally averaged loadings.

For the impact of individual fund size (i.e., FundSize), there seems to be some
time-series variation. For example, around 2001, right after the dot-com bubble
bursts, the impact of FundSize reaches its all-time high. This makes sense as when
the market is bearish, there may be limited investment opportunities so a growth
in a fund’s size may have a large negative impact. Overall, the time-series of the
impact of FundSize seem to cluster around the population estimate, consistent with
our evidence shown in the previous section that the cross-sectional variation in the
impact of FundSize is small.

For the impact of industry size (i.e., IndusSize), there appears to be a U-shaped
pattern: the average loading on IndusSize first declines, reaches its lowest around
2000, and then bounces back in 2011, reaching a level close to zero. We believe that
this U-shaped pattern is not a coincidence. It provides information about the overall
capacity of the mutual fund industry. In particular, we believe that the U-shaped
pattern can be rationalized by the interaction between the dilution effect and the
diminishing alpha effect, as we shall explain below.23

At the beginning of time t, suppose the amount of capital (in dollars) in the
industry is Ct. The average fund is generating an alpha of α0. By the end of the year,
the industry generates a profit of Ctα0 (in dollars). Suppose the industry returns all
the profits to investors, only keeping the initial capital (i.e., Ct). At the same time,
there is a capital inflow of Nt. So in total the amount of capital is Ct +Nt at the end
of time t. However, due to the scarcity of investment ideas, for each dollar of the new
capital coming in, funds only expect to generate an alpha of α0dt, where dt ∈ (0, 1)
measures the diminishing alpha effect. Under these assumptions, the total amount of
profits between time t+ 1 and t+ 2 is Ctα0 +Ntα0dt. Hence, the alpha generated by
the average fund between t+ 1 and t+ 2 is:

α1 =
Ctα0 +Ntα0dt

Ct +Nt

.

23Another observation from Figure 3 is that there appears to be a sudden drop in the impact of
industry size around 2008–2009. This can be explained by the influx of relatively small funds around
the same period, as we see in Figure 1. Relatively small funds display a larger impact of IndusSize
as shown in Table 2. As such, a larger fraction of smaller funds would imply a temporarily lower
averaged decreasing returns to scale.

25

Electronic copy available at: https://ssrn.com/abstract=2990737



The drop in alpha between the two periods is calculated to be:

∆α = α1 − α0,

= (1− dt)︸ ︷︷ ︸
dimishing alpha

× Nt/Ct
1 +Nt/Ct︸ ︷︷ ︸

dilution

α0 (10)

Note that we can use ∆α to approximate the loading on IndusSize. (10) shows that
∆α is driven by two effects. The diminishing alpha effect captures the idea that when
good ideas are exhausted, we can only explore the not-so-good ideas (see, e.g., Chen
et al., 2004) and hence experience a drop in alpha by (1− dt)α0. The dilution effect
captures how new capital dilutes existing capital. Notice that the dilution effect is
the strongest when Nt/Ct is large, that is, when the amount of new capital is large
relative to the amount of existing capital.

Using (10), we can account for the U-shaped pattern for the time-series of the
response to IndusSize. Initially, Ct is small, so the amount of existing capital is low.
This implies a strong dilution effect. Meanwhile, dt is close to one as there are still
plenty good investment ideas. In the extreme case, when dt = 1 so each dollar of new
capital comes in with a new and equally profitable investment idea as existing ideas,
then the response to IndusSize should be zero. Indeed, this explains why we see a
small response to IndusSize in 1991.

As more capital flows into the industry, Ct becomes large, so the dilution effect
becomes smaller. At the same time, dt goes down (1 − dt goes up) as the quality
of investment ideas deteriorates. As a result, the dilution effect and the diminishing
alpha effect (i.e., 1 − dt) work against each other. Overall, the diminishing alpha
effect dominates, explaining the downward movement in the response to IndusSize
between 1991 and 2000. ∆α reaches its peak in 2000 when the increase in 1 − dt
exactly offsets the decrease in the dilution effect.

Finally, after 2000, the dilution effect takes over and remains the dominating effect
in driving the response to IndusSize. This is consistent with the upward movement
in the response to IndusSize after 2000. In the extreme case, when there is already a
large amount of capital (i.e., Ct) in the industry, the dilution effect of a capital inflow
of $1 should be close to zero. At the same time, 1 − dt is bounded above by one
since in the worst case scenario, new capital comes in with no investment ideas (it is
unlikely that new capital comes in with ideas that destroy alphas). As a result, ∆α
is close to zero, consistent with what we see for the response to IndusSize around
2011.24

24Again, we are offering is a simple plausible story to explain the time-series dynamics of the
response to IndusSize. Alternative explanations may be available. To distinguish among different
ideas, we need to calibrate model parameters, in particular dt that quantifies the impact of dimin-
ishing alpha. Such a calibration may require detailed trading data and is therefore beyond the scope
of our paper.
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Figure 3: Impact of Scale: Time-series
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Time-series of cross-sectionally averaged loadings on scale. At each point in time, we identify
funds that are available in our database. We obtain the loadings of these funds based
on our full-sample estimate. We then calculate the cross-sectionally averaged loadings
on IndusSize and FundSize for these funds. We plot the time-series of these averaged
loadings. The dashed lines show the 95% confidence intervals.
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5.3 Do Investors Respond to Decreasing Returns to Scale?

As with manager skill, the ability of a manager to resist decreasing returns to scale
should also be heterogeneous. We explore the implications of this heterogeneity by
creating long-short portfolios that sort the cross-section of funds by the estimates of
their loadings on IndusSize and FundSize using past information.

In particular, we estimate our model using a rolling five-year window.25 At time t,
we look back five years to obtain the loadings on IndusSize and FundSize for each
fund. We then create long-short portfolios of funds based on these loadings.

Table 3 presents the results on double sorts based on the loadings on IndusSize
and fund sizes.26 We also present results on triple sorts based on the loadings on
IndusSize, fund sizes and past performances in Appendix D. By taking a long po-
sition in funds with a larger loading on IndusSize (i.e., less sensitive to industry
decreasing returns to scale) and a short position in funds with a smaller loading
(i.e., more sensitive to industry decreasing return to scale), we generate a positive
and significant average return (both statistically and economically) across funds with
different industry sizes and past performances.27

25Similar to our full-sample estimates, a fund needs to have at least 18 monthly observations to
be considered. Our results are similar if we use an expanding window, that is, if we use all the
information in the past to estimate our model. While five years may be considered too short to have
a reliable estimate on decreasing returns to scale, fund portfolio sorts allow us to diversify away
some estimation error for the fund-level parameter estimate and still generate meaningful signals to
predict fund returns in the future.

26We use conditional sorts based on fund sizes and loadings to create our portfolios. In particular,
we first sort funds into quintiles based on fund size. Within each quintile, we further sort funds into
quintiles based on loadings. Our results are similar if we use independent sorts, that is, sorts that
are based on cutoffs for fund sizes and loadings that are calculated independently of each other.

27There are five long-short strategies. After correcting for test multiplicity (see Harvey et al.,
2016), it is likely that some of these strategies are statistically significant, even under Bonferroni’s
correction.
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Table 3: Portfolio Sorts Based on Loadings on IndusSize and Fund Sizes

Annualized alphas for strategies that sort the cross-section of funds
based on loadings on IndusSize and fund sizes. Using a rolling five-year
window, we estimate our model to obtain the cross-section of loadings
on IndusSize. We then sort funds into different groups based on fund
sizes and the loadings. We use conditional sorts to first sort funds into
size quintiles, and then sort funds into five groups based on the loadings.
A low value of loading means the fund is sensitive to decreasing returns
to scale. Our sample is from 1991 to 2011. We start sorting in 1996
to have the initial five-year window to estimate our model. Panel A
subtracts the market excess return (i.e., no beta adjustment) from the
fund excess return. Panel B reports fund alphas based on the Carhart
(1997) four-factor model.

Panel A: Fund Returns Adjusted by Market Return

Fund’s TNA

Loadings Small 2 3 4 Large All

Low −0.346 −0.923 −0.393 −0.789 −0.722 −0.635
2 0.121 −0.204 −1.016 −1.526 −2.074 −0.940
3 0.073 −0.738 −1.474 −1.814 −1.253 −1.041
4 0.562 0.113 −0.385 −0.527 −0.500 −0.147

High 1.346 2.826 2.402 1.714 0.314 1.720

High - Low 1.692 3.749 2.795 2.503 1.037 2.355
(t-stat) (1.00) (3.73) (2.68) (2.27) (0.92) (2.65)

Panel B: Fund Returns Adjusted by 4-Factor Model

Fund’s TNA

Loadings Small 2 3 4 Large All

Low −1.000 −1.677 −1.318 −1.752 −1.068 −1.363
2 −0.434 −1.134 −1.620 −2.097 −2.150 −1.487
3 −0.393 −1.356 −1.798 −2.324 −1.219 −1.418
4 −0.449 −0.271 −0.897 −1.088 −0.778 −0.697

High 0.548 1.763 0.829 0.645 −0.364 0.684

High - Low 1.548 3.440 2.148 2.397 0.704 2.047
(t-stat) (1.02) (3.77) (2.23) (2.15) (0.67) (2.53)
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We offer an explanation for the patterns in the long-short portfolio returns based
on a return decomposition. Suppose the future return of a fund can be decomposed
into αi+γ

ind
i ∆sind+γfundi ∆si, where αi is the alpha, γindi is the loading on IndusSize,

∆sind is the log growth for industry size, γfundi is the loading on FundSize, and ∆si

is the log growth for the size of individual fund i. Notice that we are assuming
that idiosyncratic fund returns are zero since we are looking at well-diversified fund
portfolios. Also, αi should be thought of as the alpha corresponding to a given
benchmark factor model. Under these assumptions, the long-short portfolio return
(LSind) can be expressed as:

LSind =
1

N ind
h

∑
γindi ≥γindh

[αi + γindi ∆sind + γfundi ∆si]− 1

N ind
l

∑
γindi ≤γindl

[αi + γindi ∆sind + γfundi ∆si],

= (
1

N ind
h

∑
γindi ≥γindh

αi −
1

N ind
l

∑
γindi ≤γindl

αi)︸ ︷︷ ︸
αind

+ (
1

N ind
h

∑
γindi ≥γindh

γindi −
1

N ind
l

∑
γindi ≤γindl

γindi )∆sind

︸ ︷︷ ︸
Sind

+
1

N ind
h

∑
γindi ≥γindh

γfundi ∆si − 1

N ind
l

∑
γindi ≤γindl

γfundi ∆si

︸ ︷︷ ︸
Sindfund

,

where γindh and γindl are the loading cutoffs for the top quintile and bottom quintile,
respectively, and N ind

h and N ind
l are the number of funds within the top quintile and

bottom quintile, respectively.

We interpret the three parts (i.e., αind, Sind, Sindfund) in the return decomposition

separately. First, αind tends to be close to zero due to several reasons. Since there is
evidence for alpha persistence in the short-run, then αi can be thought of as the alpha
estimate based on past data. However, we find that past loadings on IndusSize (i.e.,
γindi ) are approximately independent of past alpha estimates. Hence, a sort based
on past loadings on IndusSize does not generate an alpha differential, either for the
past or for the future. As a result, αind is close to zero.28

The second component Sind tends to be positive. This is due to two facts. First,
the sort based on past loadings on IndusSize makes the coefficient on industry growth
(i.e., ∆sind) positive. Second, ∆sind is on average positive in our sample since the
fund industry has been expanding. Taken together, Sind tends to be positive since we
take a long position on funds with a larger (and negative) loading on IndusSize (i.e.,
more resistant to industry decreasing returns to scale) and a short position in funds

28In Appendix D, we show that our results still hold if we sort on past alphas.
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with a smaller (and negative) loading in IndusSize (i.e., less resistant to industry
decreasing returns to scale), and that the industry is expanding on average. Notice
that Sind is a directional bet in the sense that it is positive only if the industry is
expanding. If we expect the industry to shrink in the future, then we need to take
the opposite position to generate a positive alpha.

For the third component Sindfund and for ease of exposition, let’s make the as-

sumption that ∆si is homogeneous within the group γindi ≥ γindh (∆si = ∆sh) and
γindi ≤ γindl (∆si = ∆sl) which simplifies Sindfund as:29

Sindfund ≈ ∆sh(
1

N ind
h

∑
γindi ≥γindh

γfundi )−∆sl(
1

N ind
l

∑
γindi ≤γindl

γfundi ).

We also find that the past loadings on IndusSize and FundSize are approximately
uncorrelated in the cross-section. This suggests that a sort on the loadings on
IndusSize will not generate a large differential for the loadings on FundSize. Hence,
assuming 1

N ind
h

∑
γindi ≥γindh

γfundi = 1
N ind
l

∑
γindi ≤γindl

γfundi = γ̄fund, which is approximately the

population mean of γfundi , we have:

Sindfund = γ̄fund(∆sh −∆sl).

Notice that γ̄fund < 0 given our previous estimate. We later show that loadings on
IndusSize predict future fund flows in the cross-section in that funds that are more
resistant to industry decreasing returns to scale attract more capital in the future.
Hence, ∆sh −∆sl > 0. Taken together, Sindfund < 0.

Adding up all three components, the fact that sorts based on the loadings on
IndusSize generate a positive return on average implies that Sind (positive) dom-
inates Sindfund (negative). When we sort funds based on the differential decreasing
returns to scale at the industry level, we make a positive return through the on-
average positive growth of the fund industry and by taking a long (short) position in
funds that are more (less) resistant to industry decreasing returns to scale. However,
funds that are more resistant to industry decreasing returns to scale attract more
capital in the future (as we show later), which hurts their performance through de-
creasing returns to scale at the fund level. Balancing the positive return generated
by industry growth with the negative return driven by individual fund growth, the
overall effect is positive for the long-short portfolio.

29Our argument does not rely on our simplifying assumption that ∆si is homogeneous within the
two groups sorted by γindh and γindl . As long as one recognizes that ∆si is on average higher within
γindi ≥ γindh than within γindi ≤ γindl (as we show later through regressions based on fund flows), our
argument goes through.
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To summarize, we make a profit from the long-short strategies that are based on
the loadings on IndusSize through the differential exposure of the long and the short
position to the growth of the mutual fund industry. Given the growth in the overall
size of the mutual fund industry (scaled by the size of the equity market), funds that
are less sensitive to IndusSize suffer less than funds that are more sensitive, yielding
the positive average return for the long-short strategies in Table 3.

Table 4 presents the results for double sorts based on the loadings on FundSize
and fund sizes. In Appendix D, we also present results for triple sorts based on
the loadings, fund sizes, and past performances. Interestingly, notice that one needs
to take a long (short) position in funds with a higher (lower) degree of decreasing
returns to scale at the individual fund level to generate a positive return, contrary to
our strategy based on the loadings on IndusSize.

Why do funds with a higher degree of decreasing returns to scale at the individual
fund level (which should make them appear less “attractive”) earn on average a higher
return than funds with a smaller degree of decreasing returns to scale? To answer this
question, we take a closer look at how the loadings on both IndusSize and FundSize
correlate with future fund flows.

Table 5 reports the results of cross-sectional regressions that project future fund
flows onto the loadings and existing variables that may explain future fund flows.
While Table 5 shows that past loadings help predict future flows above and beyond the
contribution of existing variables, Table 6 offers deeper insights into this predictability
by exploring the nonlinear relationship between past loadings and future flows.

Table 6 sorts funds into portfolios based on past performances and the loadings,
and calculates the average percentage flow for each portfolio. Previous literature doc-
uments that past performance helps predict future flows. Moreover, this relationship
is convex in that the best past performers attract a disproportionate amount of capi-
tal in the future.30 Our results in Table 6 show that the degree of decreasing returns
to scale (both at the industry level and at the individual fund level) seems to be the
omitted variable that is driving this convex relationship between past performance
and future flows. For example, in Panel B, within funds with the best past perfor-
mance (i.e., top 20%), funds with a large loading on FundSize (i.e., top 20%) have
an inflow of 53%, which almost triples the average inflow across the other funds that
also have a great past performance.31 A similar pattern holds for the loadings on
IndusSize as in Panel A. In addition, the relationship between loadings and future
flows seems to be monotonic across different quintiles of past performance: funds with
a higher loading on either IndusSize or FundSize (i.e., a lower degree of decreasing

30For the related literature on flow-performance sensitivity and the convex relation between past
performances and future flows, see, e.g., Ippolito (1992), Gruber (1996), Chevalier and Ellison (1997),
Sirri and Tufano (1998), Spiegel and Zhang (2013), Franzoni and Schmalz (2017), Starks and Sun
(2016), and Harvey and Liu (2019).

31Based on Table 6 and Panel B, the average inflow across the other funds = 1
4×(11.8%+16.3%+

24.5% + 22.8%) = 18.9%.
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returns to scale) attract more capital in the future than funds with a lower loading
(i.e., a higher degree of decreasing returns to scale).

Table 4: Portfolio Sorts Based on Loadings on FundSize and Fund Size

Annualized alphas for strategies that sort the cross-section of funds
based on loadings on FundSize and fund sizes. Using a rolling five-year
window, we estimate our model to obtain the cross-section of loadings on
FundSize. We then sort funds into different groups based on fund sizes
and the loadings. We use conditional sorts to first sort funds into size
quintiles, and then sort funds into five groups based on the loadings. A
low value of loading means the fund is sensitive to decreasing returns to
scale. Our sample is from 1991 to 2011. We start sorting in 1996 to have
the initial five-year window to estimate our model. Panel A subtracts
the market return from the fund excess return. Panel B reports fund
alphas based on the Carhart (1997) four-factor model.

Panel A: Fund Returns Adjusted by Market Return

Fund’s TNA

Loadings Small 2 3 4 Large All

Low 1.559 1.679 1.453 0.929 0.801 1.284
2 −0.930 −0.334 0.585 −0.258 −0.377 −0.263
3 −0.439 0.885 −0.073 −0.643 −0.844 −0.223
4 1.507 −0.494 −1.342 −2.130 −1.538 −0.799

High 0.182 −0.653 −1.447 −0.811 −2.275 −1.001

Low - High 1.378 2.332 2.900 1.739 3.076 2.285
(t-stat) (1.03) (2.48) (2.72) (1.92) (3.32) (3.02)

Panel B: Fund Returns Adjusted by 4-Factor Model

Fund’s TNA

Loadings Small 2 3 4 Large All

Low 0.878 0.855 0.362 −0.137 0.562 0.504
2 −1.788 −1.498 −0.446 −1.242 −0.998 −1.194
3 −0.973 −0.091 −0.988 −1.434 −1.381 −0.973
4 0.804 −0.993 −2.062 −2.713 −1.634 −1.320

High −0.434 −0.922 −1.639 −1.064 −2.125 −1.237

Low - High 1.312 1.776 2.001 0.927 2.687 1.741
(t-stat) (1.08) (2.16) (2.28) (1.19) (3.00) (2.79)

33

Electronic copy available at: https://ssrn.com/abstract=2990737



Table 5: Forecasting Future Fund Flows

Results for Fama-MacBeth regressions that regress the cross-section of fund flows on
explanatory variables. Using a rolling five-year window, we estimate our model to obtain
the cross-section of loadings on IndusSize and FundSize. We then use these loadings and
other control variables to explain the cross-section of future fund flows, which is defined
as the one-year percentage growth in a fund’s TNA. Alpha (long-run) is the average fund
excess return over the past two years. Alpha (short-run) is the average fund excess return
over the past quarter. log(TNA) is the logarithm of the fund’s TNA. Fund age is the
total number of months that a fund exists up to the forecasting period. IdioV ol is the
standard deviation for fund excess returns over the past two years. R-square reports the
average cross-sectional R-square. Standard errors in parentheses.

Variables 1 2 3 4 5

Loadings on IndusSize 3.472 3.596 3.455
(3.94) (3.95) (4.08)

Loadings on FundSize 18.484 19.189 12.796
(5.31) (4.98) (4.09)

Alpha (long-run) 18.212 15.161 18.692 15.929 21.441
(9.76) (10.39) (9.87) (10.72) (12.15)

Alpha (short-run) 3.117 3.086 3.283 3.208 2.074
(6.61) (6.07) (6.75) (6.27) (3.73)

log(TNA) −0.106
(−6.09)

Fund age −0.001
(−3.49)

IdioV ol −1.306
(−2.64)

Avg. R-square 0.040 0.050 0.045 0.053 0.077
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Table 6: Fund Flows for Portfolio Sorts Based on Loadings on IndusSize,
FundSize and Past Performance

Percentage fund flows for portfolio sorts based on the loadings on
IndusSize/FundSize and past performances. Using a rolling five-year
window, we estimate our model to obtain the cross-section of loadings
on IndusSize/FundSize. We then sort funds into different groups
based on past performances and the loadings. We use conditional sorts
to first sort funds into performance quintiles, and then sort funds into
five groups based on loadings. A low value of loading means the fund is
sensitive to decreasing returns to scale. Past performance is measured
as the average fund excess return in the past two years. Our sample is
from 1991 to 2011. We start sorting in 1996 to have the initial five-year
window to estimate our model.

Panel A: Flow Sorts Based on Loadings on IndusSize and Past Performance

Past Performance

Loadings Worst 2 3 4 Best All
(IndusSize)

Low −0.125 −0.082 −0.035 0.047 0.176 −0.004
2 −0.127 −0.086 −0.031 0.090 0.152 −0.001
3 −0.127 −0.026 −0.025 0.073 0.178 0.015
4 0.080 −0.038 0.025 0.086 0.205 0.072

High 0.014 0.021 0.064 0.203 0.555 0.171

High - Low 0.139 0.103 0.098 0.156 0.379 0.175
(t-stat) (4.08) (8.67) (10.11) (3.91) (3.78) (9.17)

Panel B: Flow Sorts Based on Loadings on FundSize and Past Performance

Past Performance

Loadings Worst 2 3 4 Best All
(FundSize)

Low −0.091 −0.053 −0.023 0.037 0.118 −0.002
2 −0.099 −0.054 −0.002 0.038 0.163 0.009
3 −0.128 −0.061 −0.028 0.082 0.245 0.022
4 0.010 −0.008 0.012 0.088 0.228 0.066

High 0.028 −0.031 0.042 0.261 0.526 0.165

High - Low 0.119 0.022 0.065 0.224 0.409 0.168
(t-stat) (1.84) (1.61) (6.47) (4.76) (3.89) (6.34)
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Based on the results in Table 5 and 6, we offer an explanation for our results in Ta-
ble 4, where we show that funds with a higher loading on FundSize (greater exposure
to decreasing returns to scale) perform better than funds with a lower loading. Funds
with a higher loading on FundSize (i.e., more resistant to individual fund decreasing
returns to scale), controlling for past performances, appear to be more attractive to
investors than funds with a lower loading. As a result, investors reward funds with
a higher loading on FundSize with a disproportionately larger amount of capital
in the future. However, these funds cannot absorb these capital without sacrificing
future performance (Berk and Green (2004); see more detailed discussion later), due
to decreasing returns to scale. Consequently, the performance of these funds drops
relative to funds with a lower loading on FundSize, who experience either a much
smaller capital inflow or even a capital outflow.

One missing piece for the argument above is whether there is a substantial dif-
ference in the out-of-sample degree of decreasing returns to scale between funds with
a high in-sample loading on FundSize and those with a low in-sample loading on
FundSize. If this were the case, then the large difference in decreasing returns to
scale may justify the large difference in future flows between funds with a high loading
on FundSize and funds with a low loading, to the extent that there is no difference
in future performances, contrary to what we see in Table 4 and Appendix Table C.2.
In untabulated analyses, we show that this is not the case.32 While past loadings
on FundSize are indicative of the future loadings, i.e., decreasing returns to scale is
persistent, the cross-sectional variation in the future loadings is not large enough to
wipe out the differential impact of future flows on future performances.

To summarize, our results highlight the dynamic relationships between past per-
formances, decreasing returns to scale, and future flows. While past alphas are im-
portant in driving future flows, what is also important is how these alphas are earned.
Funds that earn a high alpha while at the same time display abilities to resist decreas-
ing returns to scale attract a disproportionately large amount of capital in the future,
which reduces their performance in the future. Equivalently, funds that earn a low
alpha while at the same time are sensitive to decreasing returns to scale experience a
disproportionately large amount of capital outflow, which causes their performances
to rebound in the future. Relative to the previous literature, the heterogeneous de-
creasing returns to scale we document appears to be an important conditioning vari-
able to further our understanding of the link between past performance and future
performances.

We now interpret our findings in the context of theoretical models such as Berk
and Green (2004) that rationalize flow-performance relationship through diseconomies
of scale. First of all, consistent with Berk and Green, we find that decreasing returns
to scale, both at the industry level and at the individual fund level, is an integral

32By sorting funds based on the in-sample loadings estimated over a five-year window and cal-
culating the average out-of-sample loadings over the following five years, we find that the average
out-of-sample loading on FundSize is -0.90% for funds that are ranked the top 20% in terms of
in-sample loadings, and is -1.13% for the bottom 20%.
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part of fund performance. The trading strategies we construct exploit the interaction
between decreasing returns to scale and future fund flows. What is also consistent with
Berk and Green but is not explicitly modeled in their framework is the heterogeneity
in the degree of decreasing returns to scale. In particular, consistent with the idea
that investors supply funds to managers competitively, we find that funds with a
lower degree of decreasing returns to scale—hence a higher capacity in absorbing
new capital without reducing performance—attract more capital than funds whose
performance will likely suffer if additional capital is accepted. However, our results
on portfolio sorts show that investors seem to overact to decreasing returns to scale in
the sense that holding alphas constant, investors reward funds with a lower degree of
decreasing returns to scale with a disproportionately larger amount of capital, to the
extent that the future performances of these funds become lower (due to decreasing
returns to scale) than those with a higher degree of decreasing returns to scale, which
is at odds with the theoretical prediction of Berk and Green that funds should offer
the same competitive market return in the future.

How plausible is our interpretation? We believe that decreasing returns to scale
should be of first-order importance in the decision to allocate to a particular fund.
First of all, investment advisors such as Morningstar explicitly pay attention to the
capacities of funds. A basic search of key words related to fund size and performance
on Morningstar generates thousands of results related to the size and performance
relation.33 Second, conditional on having a good record, fund managers are likely
to boast about their increase in assets, if there is any. This may further signal
the quality of the fund and help attract future flows.34 This is consistent with our
empirical analysis (Table 6) that there is a positive correlation between a low degree
of decreasing returns to scale (i.e., achieving a good record despite an increase in size)
and inflows in the future. Finally, theoretical models such as Berk and Green (2004)
and Pastor and Stambaugh (2012) hinge on the first-order importance of decreasing
returns to scale in generating the flow-performance relation. In their model economies,
investors must be aware of the degree of decreasing returns to scale to allocate their
capital efficiently, and, consistent with our empirical findings, investors respond to
decreasing returns to scale.

Finally, our results on portfolio sorts highlight two important facts for decreasing
returns to scale (both at the industry level and at the individual fund level). First,
there is considerable cross-sectional heterogeneity in the degree of decreasing returns
to scale, allowing us to create long-short portfolios that exploit this heterogeneity.
Second, the degree of decreasing returns to scale estimated by our model is persistent,
making it possible for us to use past information to predict future performance.35 Both

33A search of “fund size, performance” on morningstar.com results in about 12,000 hits, many of
which are related to the size and performance relation.

34In the hedge fund industry, contrary to mutual funds, a good hedge fund may signal its quality
by closing some of its funds to new investment.

35Consistent with the literature on mutual funds that creates long-short trading strategies to
demonstrate the usefulness of a certain signal to predict future fund performance, we also use long-
short trading strategies to highlight the implications of decreasing returns to scale. However, one

37

Electronic copy available at: https://ssrn.com/abstract=2990737



facts help validate the underlying assumptions for our estimation framework: 1. The
degree of decreasing returns to scale is fund specific; and 2. Our main specification
assumes a constant loading on industry/fund size for each fund, consistent with the
persistence in the degree of decreasing returns to scale.36

6 Conclusion

Berk and Green (2004) pave a new way for us to think about active portfolio man-
agement. However, there is mixed evidence in the literature for one of the key as-
sumptions in their model, that is, diseconomies of scale for assets under management.
We develop a new structural framework to estimate the impact of scale for mutual
funds. Our framework allows for fund fixed effects and the heterogeneous impact
of scale in the cross-section. Our model also does not suffer from the Stambaugh
(1999) bias that plagues predictive regressions that include price-scaled variables as
regressors. Importantly, we show that the way we measure fund size plays a key role
in estimating the impact of scale.

The panel regression model we propose is a dynamic heterogeneous coefficients
panel regression—a model where model parameters are mainly identified through
time-series dynamics and where heterogenous loadings on regressors are allowed. In
fact, one can think about our framework as first running separate time-series re-
gressions, and then applying a shrinkage estimator to the cross-section of parameter
estimates. This is a different approach than the standard fixed effects panel approach.
The literature in growth economics proposes models that feature similar ideas.

We find strong evidence for decreasing returns to scale at the individual fund
level. We also present evidence for decreasing returns to scale at the industry level,
although its economic significance is smaller. By allowing heterogeneous loadings for
funds, we also find that the impact of industry scale is decreasing in fund’s size while
the impact of fund scale is fairly homogeneous among different size groups.

Finally, we highlight the implications of heterogeneous decreasing returns to scale
by creating long-short portfolios that exploit the differential sensitivities to decreasing
returns to scale for the cross-section of funds. We show that both industry level and

should interpret these long-short trading strategies with caution. In our context, while we use long-
short trading strategies to highlight the importance of persistence and heterogeneity in decreasing
returns to scale in generating significant alpha differentials, such strategies are complicated by high
transaction costs and the inability to short mutual funds. As such, the average returns for these
trading strategies should be thought of as an indication of the expected alpha in choosing a fund
based on the estimated decreasing returns to scale, rather than as the actual alpha earned by
investing in a diversified portfolio of funds.

36One can extend our framework to incorporate time-varying decreasing returns to scale by mod-
eling the loading parameters as functions of time-varying fund-level characteristics (e.g., age, TNA,
etc.). We leave these extensions to future research.
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fund level decreasing returns to scale can be used to construct long-short portfolios
that generate a sizable alpha. To interpret our findings, we discover that decreasing
returns to scale is the omitted variable that drives the convex relation between past
performance and future flows: funds with the best performance attract a dispropor-
tionate amount of capital only if they display a low sensitivity to decreasing returns
to scale.

39

Electronic copy available at: https://ssrn.com/abstract=2990737



References

Avramov, D., R. Kosowski, N. Y. Naik, and M. Teo. 2011. Hedge funds, managerial
skill, and macroeconomic variables. Journal of Financial Economics 99: 672–692.

Banerjee, A. V. and E. Duflo. Inequality and growth: What can the data say?
Journal of Economic Growth 8:267–299.

Barras, L., O. Scaillet, and R. Wermers. 2010. False discoveries in mutual fund
performance: Measuring luck in estimated alphas. Journal of Finance 65, 179-216.

Barro, R. 1991. Economic growth in a cross-section of countries. Quarterly Journal
of Economics 106:407-443.

Barro, R. and X. Sala-i-Martin. .1992. Convergence. Journal of Political Economy
100:223-251.

Backus, D. K., P. J. Kehoe, and T. J. Kehoe. 1992. In search of sacle effects in trade
and growth. Journal of Economic Theory 58, 377-409.

Berk, J. B., and R. C. Green. 2004. Mutual fund flows and performance in rational
markets. Journal of Political Economy 112, 1269–1295.

Berk, J. B., and van Binsbergen, J. H. 2015. Measuring skill in the mutual fund
industry. Journal of Financial Economics 118, 1–20.

van Binsbergen, Jules H., Jeong Ho John Kim, and Soohun Kim. 2020. Capital
allocation and the market for mutual funds: Inspecting the mechanism. Georgia
Tech Scheller College of Business Research Paper 3462749 (2020).

Bris, A., H. Gulen, P. Kadiyala, and P. Raghavendra, 2007, Good stewards, cheap
talkers, or family men? The impact of mutual fund closures on fund managers, flows,
feed, and performance. Review of Financial Studies 20, 953–982.

Carhart, M. M. 1997. On persistence in mutual fund performance. Journal of Finance
52, 57–82.

Chen, J., H. Hong, H. Ming, and J. D. Kubik, 2004. Does fund size erode mutual fund
performance? The role of liquidity and organization. American Economic Review
94, 1276–1302.

Chen, Y., C. Cao, B. Liang, and A. Lo. 2013. Can hedge funds time market liquidity?
Journal of Financial Economics 109, 493-516.

Chen, Y., M. Cliff, and H. Zhao. 2015. Hedge funds: The good, the bad, and the
lucky. Journal of Financial and Quantitative Analysis.

Chevalier, J. A., and G. D. Ellison, 1997, Risk taking by mutual funds as a response
to incentives. Journal of Political Economy 105, 1167–1200.

40

Electronic copy available at: https://ssrn.com/abstract=2990737



Cremers, M., A. Petajisto, and E. Zitzewitz. 2013. Should benchmark indices have
alpha? Revisiting performance evaluation. Critical Finance Review 2: 1-48.

Dahlquist, M., M. Ibert, and F. Wilke. 2021. Expectations of active mutual fund
performance. Working Paper.

Durlauf, S., A. Kourtellos, and A. Minkin. 2001. The local Solow growth model.
European Economic Review 45:928–940.

Elton, E. J., M. J. Gruber, and C. R. Blake. 2001. A first look at the accuracy of
the CRSP mutual fund database and a comparison of the CRSP and Morningstar
mutual fund databases. Journal of Finance 56, 2415-2430.

Evans, R. B. 2010. Mutual fund incubation. Journal of Finance 65, 1581–1611.

Fama, E. F., and K. R. French. 2010. Luck versus skill in the cross-section of mutual
fund returns. Journal of Finance 65, 1915-1947.

Ferson, W., and R. Schadt. 1996. Measuring fund strategy and performance in chang-
ing economic conditions. Journal of Finance 51, 425-460.

Ferson, W., and Y. Chen. 2015. How many good and bad fund managers are there,
really? Working Paper.

Franzoni, F. A., and M. C. Schmalz. 2017. Fund flows and market states. Review of
Financial Studies 30: 2621–2673.

Glode, V., B. Hollifield, M. Kacperczyk, and S. Kogan. 2012. Time-varying pre-
dictability in mutual fund returns. Working Paper.

Golez, B., and S. Shive. 2015. When fund flows take the fun (alpha) away. Working
Paper.

Gruber, M. J., 1996, Another puzzle: The growth in actively managed mutual funds.
Journal of Finance 51, 783–810.

Harberger, A. 1987. Comment. Macroeconomics Annual 1987, Stanley Fischer, ed.,
Cambridge: MIT Press.

Harvey, C. R., Y. Liu, and H. Zhu. 2016. ... and the cross-section of expected returns.
Review of Financial Studies 29, 5–72.

Harvey, C. R., and Y. Liu. 2016. Detecting repeatable performance. Review of Fi-
nancial Studies 31: 2499—2552.

Harvey, C. R., and Y. Liu. 2019. Cross-sectional alpha dispersion and performance
evaluation. Journal of Financial Economics 134: 273–296.

Harvey, C. R., Y. Liu, E. K. M. Tan, and M. Zhu. 2021. Crowding: Evidence from
fund managerial structure. Working Paper.

41

Electronic copy available at: https://ssrn.com/abstract=2990737



Henriksson, R., and R. Merton. 1981. On market timing and investment performance
II: Statistical procedures for evaluating forecasting skills. Journal of Business 54,
513-534.

Islam, N. 1995. Growth Empirics: A panel data approach. Quarterly Journal of
Economics 110:1127-1170.

Ippolito, R. A., 1992. Consumer reaction to measures of poor quality: Evidence from
the mutual fund industry. Journal of Law and Economics 35, 45–70.

Jones, C., and J. Shanken. 2005. Mutual fund performance with learning across
funds. Journal of Financial Economics 78, 507–552.

Jones, C., and H. Mo. 2021. Out-of-sample performance of mutual fund predictors.
Review of Financial Studies 34: 149—193.

Lee, K., M. H. Pesaran, and R. Smith. 1998. Growth empirics: A panel data ap-
praoch — A comment. Quarterly Journal of Economics: 319–323.

Magkotsios, G. 2018. Industry-level returns to scale and investor flows in asset man-
agement. Working Paper.

Mankiw, N. G., D. Romer, and D. Weil. 1992. A contribution to the theory of
economic growth. Quarterly Journal of Economics 107:407-437.

McLemore, P. 2019. Do mutual funds have decreasing returns to scale? Evidence
from fund mergers. Journal of Financial and Quantitative Analysis 54, 1683–1711.
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A Economic Growth and Decreasing Returns to

Scale

First, while early work on economic growth focuses on cross-sectional regressions,37

directly following the seminal work by Solow (1956) and Swan (1956), later gen-
erations of growth regressions use country fixed effects to allow for time-invariant
idiosyncratic growth components.38 We face a similar issue when running scale re-
gressions. As pointed out by PST, funds that have a large size are more likely to fall
into capable hands, creating an endogeneity bias if we simply run a cross-sectional
regression of fund alpha on fund size. Following PST, we propose a dynamic panel
regression approach that allows for fund fixed effects.

Second, one benefit of having the Solow neo-classical growth model to guide em-
pirical explorations is that it guarantees that all variables are properly scaled, so
regression coefficients correspond to the structural parameters in the model and have
straightforward economic interpretations. For example, in a standard growth regres-
sion, income growth is regressed on log per capita GDP, where the slope coefficient β is
the key variable of interest. By doing this, from a time-series perspective, β measures
the change in income growth if log GDP per capita goes up by one unit (i.e., current
GDP per capita grows by 100% relative to previous GDP per capita), regardless of
the levels of GDP per capita across countries, whose distribution is rather dispersed
in the cross-section. This is important as it makes it plausible to have a common
slope that applies to all countries. In contrast, as implied by the neoclassical growth
theory, it would be inappropriate to directly use the levels of GDP per capita. In
growth economics, the use of log to scale level variables is so natural that researchers
barely mention the reason to do so. This practice also applies to research outside the
area of growth. For example, Backus, Kehoe and Kehoe (1992) study the impact of
the size of the economy on trade and growth. They explicitly take log transformations
of the various measures of scale that they study.

As we mentioned previously, the lack of a benchmark theoretical model such as the
Solow growth model creates a challenge for empirical research on the impact of scale.
For instance, PST directly use the level of the total net assets (TNA) — adjusted for
the aggregated value of the equity market — to measure scale and study its impact
on manager skill.39 A common coefficient γ is assumed to apply to the cross-section
of funds to pick up the impact of scale. In light of our previous discussion on the use
of log GDP in growth research, it is challenging to interpret the γ coefficient. For
example, for a small fund that has an initial TNA of $10 million, doubling its size
would imply a change of alpha of γ× $10 million. For a large fund that has an initial

37See, e.g., Barro (1991), Barro and Sala-i-Martin (1992), and Mankiw, Romer, and Weil (1992).
38For an early influential paper, see Islam (1995).
39To be clear, PST also try the log of the TNA in one specification in their supplementary

analysis. We advocate the use of the log of the TNA in our main analysis as this makes sure that
the cross-section of regression parameters are comparable economically.
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TNA of $10 billion, an inflow of $10 million would imply the same change of alpha
in the PST framework. However, $10 million is only 0.1% of the initial TNA of the
large fund and thus should have a much smaller impact on its alpha than the impact
on the small fund.

In measuring decreasing returns to scale, we consider two metrics. The first is
the size of the fund industry as a whole relative to the total market capitalization of
the equity market. The second is a fund specific measure of size where we look at a
fund’s size relative to the size of the fund industry. By doing this, the impact of scale,
as captured by the regression coefficient, can be thought of as approximately homo-
geneous across funds, making it possible to be estimated through panel regressions
by pooling information from the cross-section of funds. We show that this specifi-
cation of TNA is essential to the estimation of the impact of scale and can imply
dramatically different estimates than what existing papers find. We also consider a
second measure of size — the size of the fund industry relative to the size of the stock
market, similar to PST.

Third, one of the assumptions underlying the basic version of growth regressions
is a common data generating process across all countries. One implication of this
assumption is a common regression coefficient (i.e., γ) in the cross-section. However,
this simple setup may be too restrictive to capture γ heterogeneity in the cross-
section, as argued in an influential paper by Harberger (1987). In fact, Solow (1994,
2001) himself expresses the concern that different countries do not represent random
draws from a common growth model. Heterogeneity should be taken into account to
adjust for the difference in slopes. Recent papers that address the issue of parameter
heterogeneity include Banerjee and Duflo (2003), Durlauf, Kourtellos, and Minkin
(2001), Kevin, Pesaran, and Smith (1998), and Phillips and Sul (2007).

When it comes to the impact of assets under management, we believe that the
heterogeneous impact of scale could be even more important. This is because, unlike
Solow’s growth model where we have well-specified and micro-founded (to a certain
extent) production functions to characterize countries’ income growth processes, there
is a large amount of model uncertainty — both in terms of the business models that
fund managers use to generate returns and the statistical models that econometricians
use to make inference on alphas — for the data generating process of fund returns.
Model uncertainty makes it unlikely that a common regression coefficient (i.e., γ) is
sufficient to describe the cross-sectional impact of scale. Moreover, in the context of
performance evaluation, just as with manager skill, the ability of a manager to resist
decreasing returns to scale should also be manager specific. We propose a framework
that captures this heterogeneity while at the same time producing an estimate for
the cross-sectionally averaged impact of scale, which makes it possible to interpret
the impact of assets under management in general.

Importantly, as remarked by Solow (2001) in the context of growth regressions,
one has to recognize that parameter heterogeneity is unlikely captured by control
variables, which include the hundreds of variables that have been proposed to ex-
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plain cross-country growth differences. In our context, while we can use fund level
characteristics as instruments to capture parameter heterogeneity, we will probably
never know whether a given list of characteristics is exhaustive or what the conse-
quences are of omitting several instruments. However, our model does not rely on
a pre-specified list of characteristics. Instead, it uncovers the regression coefficient
(i.e., the loading on fund size or industry size) of an individual fund by combining
cross-sectional information with the fund’s time-series information.

B Model Estimation

B.1 Characterizing f(Γ|R,G(k)): Step II

Using Bayes’ law, we have:

f(Γ|R,G(k)) ∝ f(R|Γ,G(k))f(Γ|G(k)). (B.1)

Given the independence of the residuals and the γi’s, the right-hand side of (B.1) is
the product of the likelihoods of all funds, i.e.:

f(R|Γ,G(k))f(Γ|G(k)) =
N∏
i=1

f(Ri|γi,G(k))f(γi|G(k)).

To characterize f(Γ|R,G(k)), it is sufficient to determine f(Ri|γi,G(k))f(γi|G(k)) for
each fund. To avoid the cluster of notations, we use G and G(k) interchangeably to
denote the known parameters at the k-th iteration.

Under normality and for the simple case where γi’s are scalars (that is, there is
only one fund characteristic that affects returns), it can be shown that

f(Ri|γi,G)f(γi|G) ∝ exp{−
[γi −

σ2
γ

∑T
t=1 gi,t(ri,t−β′

ift)+σ
2
i µγ

σ2
γ

∑T
t=1 g

2
i,t+σ

2
i

]2

2
σ2
γσ

2
i

σ2
γ

∑T
t=1 g

2
i,t+σ

2
i

},

where µγ and σγ are the mean and the standard deviation of the population of γi’s,
that is, γi|G ∼ N (µγ, σ

2
γ).
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Hence, let

mi ≡
∑T

t=1 gi,t(ri,t − β′ift)/σ2
i + µγ/σ

2
γ∑T

t=1 g
2
i,t/σ

2
i + 1/σ2

γ

,

vi ≡
1∑T

t=1 g
2
i,t/σ

2
i + 1/σ2

γ

,

we have
γi|R,G ∼ N (mi, vi).

In general, when there are more than one fund characteristics that affect returns,
the formulas are more involved as loadings on characteristics are generally not inde-
pendent of each other. We present the formulas for the case with two characteristics,
corresponding to our main application in the paper. More general cases can be simi-
larly derived.

For the case with two characteristics, let gi,1 = [gi,1,t=1, gi,1,t=2, . . . , gi,1,t=T ]′ and
gi,2 = [gi,2,t=1, gi,2,t=2, . . . , gi,2,t=T ]′ be the two column vectors of fund characteristics
for fund i. We combine gi,1 and gi,2 into the T × 2 matrix Gi of fund characteristics,
i.e., Gi = [gi,1, gi,2].

Next, let b1 = [1, 0]′ and b2 = [0, 1]′ be two basis vectors. Let resi = [ri,t=1 −
β′ift=1, ri,t=2 − β′ift=2, . . . , ri,t=T − β′ift=T ]′ be the column vector of residuals.

Define

V ARi = (G′iGi/σ
2
i + b1b

′
1/σ

2
γ,1 + b2b

′
2/σ

2
γ,2)
−1,

CPRODi = (G′iresi)/σ
2
i + b1µγ,1/σ

2
γ,1 + b2µγ,2/σ

2
γ,2,

MEANi = V ARi · CPRODi,

where (µγ,1, σγ,1) and (µγ,2, σγ,2) are the mean and standard deviation for the popu-
lation of γi,1’s and γi,2’s, respectively.

Then γi = [γi,1, γi,2]
′ follows a bivariate normal distribution with mean vector

MEANi and variance matrix V ARi, that is,

γi|R,G ∼ N (MEANi, V ARi).
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B.2 Finding the MLE: Step III

We again first focus on the univariate case, that is, there is a single fund charac-
teristic that is driving fund returns. To find the MLE, we first need to calculate
EΓ|R,G(k) [

∑N
i=1 log f(Ri|γi, βi, σi)f(γi|Λ)], which can be decomposed as

EΓ|R,G(k) [
N∑
i=1

log f(Ri|γi, βi, σi)f(γi|Λ)],

= EΓ|R,G(k) [
N∑
i=1

log f(Ri|γi, βi, σi)] + EΓ|R,G(k) [
N∑
i=1

log f(γi|Λ)].

We first focus on EΓ|R,G(k) [
∑N

i=1 log f(Ri|γi, βi, σi)] and try to find the MLE for {βi}Ni=1

and {σi}Ni=1. Note that f(Ri|γi, βi, σi) is a normal density and its kernel, which is the
only part that involves γi, is the sum of squares of the regression residuals, i.e.,∑T

t=1(ri,t − β′ift − γigi,t)2. Taking the expectation of log f(Ri|γi, βi, σi) with respect
to γi|R,G(k), whose distribution is given in the previous section, we have:

Eγi|R,G(k) log f(Ri|γi, βi, σi) = −T
2

log(2πσ2
i )−

1

2σ2
i

[
T∑
t=1

(ri,t−β′ift−migi,t)
2+vi

T∑
t=1

g2i,t].

(B.2)
Treating {ri,t −migi,t}Tt=1 as the characteristic adjusted returns, the MLE for βi and
σ2
i can be found as

βMLE
i = (F ′F )−1F ′Radj

i , (B.3)

(σ2
i )
MLE =

1

T
[
T∑
t=1

(ri,t − (βMLE
i )′ft −migi,t)

2 + vi

T∑
t=1

g2i,t], (B.4)

where

F(T×(K+1)) =


f1
f2
...
fT

 , Radj
i(T×1) =


ri,1 −migi,1
ri,2 −migi,2

...
ri,T −migi,T

 .

We now focus on EΓ|R,G(k) [
∑N

i=1 f(γi|Λ)] and try to find the MLE for Λ = (µγ, σ
2
γ)
′.

Taking the expectation of
∑N

i=1 log f(γi|Λ) with respect to Γ|R,G(k), we have:

EΓ|R,G(k) [
N∑
i=1

log f(γi|Λ)] = −N
2

log(2πσ2
γ)−

1

2σ2
γ

[
N∑
i=1

(mi − µγ)2 +
N∑
i=1

vi]. (B.5)
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The MLE for µγ and σ2
γ can be found as

µMLE
γ =

1

N

N∑
i=1

mi, (σ
2
γ)
MLE =

1

N

N∑
i=1

(mi − µMLE
γ )2 +

1

N

N∑
i=1

vi. (B.6)

For the bivariate case, let Radj,bi
i = Ri −Gi ·MEANi. The MLE for βi is

βMLE,bi
i = (F ′F )−1F ′Radj,bi

i . (B.7)

Let resbii = Radj,bi
i − FβMLE,bi. The MLE for σ2

i is

(σ2
i )
MLE,bi = ((resbii )′resbii + tr(G′iGiV ARi))/T. (B.8)

The MLE for (µγ,1, σ
2
γ,1) and (µγ,2, σ

2
γ,2) are given by:

µMLE,bi
γ,1 =

1

N

N∑
i=1

MEANi,1,

(σ2
γ,2)

MLE,bi =
1

N

N∑
i=1

(MEANi,1 − µMLE,bi
γ,1 )2 +

1

N

N∑
i=1

V ARi,11,

µMLE,bi
γ,2 =

1

N

N∑
i=1

MEANi,2,

(σ2
γ,2)

MLE,bi =
1

N

N∑
i=1

(MEANi,2 − µMLE,bi
γ,2 )2 +

1

N

N∑
i=1

V ARi,22,

where MEANi,1 and MEANi,2 are the first and second element of MEANi, and
V ARi,11 and V ARi,22 are the upper-left and lower-right element of V ARi.
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C A Simulation Study

We detail a comprehensive simulation study to examine the performance of our model,
paying particular attention to the finite-sample bias issue in Stambaugh (1999) and
PST.

Given a T ×N panel of fund returns, we obtain summary statistics and parameter
estimates that later will be used to generate random return panels. First, we record
the first months in which funds report a TNA. These will be the entry months
for funds. Next, for each fund, we run OLS to estimate loadings on characteristics
(IndusSizet and FundSizei,t) as well as on benchmark factors, i.e.,

ri,t+1 = αi + γi,1IndusSizet + γi,2FundSizei,t +
K∑
j=1

βijfj,t+1 + εi,t+1, (C.1)

where ri,t+1 is the excess return (i.e., actual return minus the one-month U.S. Trea-
sury bill rate) for fund i in period t + 1, αi is the unconditional alpha, γi,1 and γi,2
are the loadings on characteristics, {βij}Kj=1 includes exposures to benchmark fac-
tors, and εt+1 is the return residual. We store the estimates of alpha and loadings
on benchmark factors in βi = [αi, βi1, βi2, . . . , βiK ]′ and the estimate of the residual
standard deviation in σi. Since we allow up to four benchmark factors (Carhart,
1997) and thus in total six independent variables, we require that a fund has at least
18 non-missing monthly observations for all variables in the above regression to enter
our simulation.

For each fund, we also run OLS to determine how its growth in TNA depends on
contemporaneous fund returns. In particular, we estimate

TNAi,t+1

TNAi,t
− 1 = c0i + c1i(ri,t+1 + rf,t) + ηi,t+1, (C.2)

and record c0i, c1i and ση,i, where ση,i is the estimate of the residual standard deviation
in the above regression. Notice that the Stambaugh bias (Stambaugh, 1999) arises in
the above setup as ri,t+1 is driving the growth in TNA so it is positively correlated
with innovations in TNA. As shown in Stambaugh, this creates downward bias in the
regression slope coefficient if one were to regress returns on lagged TNA. PST also
implement the above regressions in their simulation study but fix the cross-section of
c0i’s, c1i’s, and ση,i’s at (roughly) their cross-sectional averages to simulate the path
of TNA’s for each fund. We deviate from their framework by using fund specific
parameter values to generate each fund’s path of TNA’s. However, estimates for fund
specific parameters can be extremely large, due to small samples for some funds. We
therefore first require that a fund has at least 18 non-missing monthly observations
for all variables in the above regression to enter our simulation. In addition, we
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winsorize c0i’s, c1i’s, and ση,i’s at their respective 10th and 90th percentiles of the
cross-sectional estimates.40

With the above parameter estimates, we are ready to simulate random return
panels. Given the interdependence between returns and TNA (in particular, TNA
depends on the contemporaneous return through (C.2); return depends on lagged
TNA through (C.1)), we generate the return panel recursively.

First of all, to take time-series uncertainty into account, we generate random
samples of factor realizations and the aggregate market capitalization for stocks
AggStock. Since there is little persistence in factor realizations, we resample the
time periods to generate random samples of factor returns. The aggregate market
capitalization for stocks is persistent. We therefore first fit an AR(1) model on the
time-series of log(AggStock) and then bootstrap the residuals. Importantly, simi-
lar to Fama and French (2010), we keep the cross-section intact when we resample
the time periods, making sure that the cross-sectional dependency among factor re-
turns and innovations to AggStock is preserved.41 We resample and obtain one
bootstrapped sample of factor returns {f̂t}Tt=1 and aggregate market capitalization

{ ̂AggStock}T−1t=0 .42

To generate a random return and TNA panel, we first randomly draw the cross-
section of γi,1’s and γi,2’s from two normal distributions: N (µγ,1, σ

2
γ,1) andN (µγ,2, σ

2
γ,2).

We collect the parameters into Λ = [µγ,1, σγ,1, µγ,2, σγ,2]
′ and will later set Λ at val-

ues that are consistent with our estimates based on the actual data. These will be
the structural parameters that we try to make inference on through our estimation
procedure.

To generate a random return and TNA panel, we start at time zero, which is
the beginning of the first month. We first generate size-related variables, that is,
TNA’s, IndusSize, and FundSize. We look at the actual data on TNA and find
funds that report TNA at time zero. We calculate the aggregate TNA across funds
and generate FundSize. With the bootstrapped market capitalization at time zero

(i.e., ̂AggStock0), we can generate IndusSize.

Moving forward to the next step, we simulate fund returns that are realized be-
tween time 0 and t = 1. In particular, we first find funds that have non-missing
IndusSize and FundSize in the previous step (i.e., time zero). We then apply (6)
to generate returns for these funds, using IndusSize and FundSize from the previ-
ous step, factor returns from the bootstrapped sample, and an independent normal
shock that has the same standard deviation as the fund in the actual data. Factor

40The particular way we winsorize the parameters does not affect our simulations results.
41Our simulation results do not change if we do not resample AggStock. However, since the

market factor in the four-factor model is correlated with innovations in AggStock, in the same way
as how fund returns correlate with innovations in TNA in (7), we believe it makes more sense to
resample both AggStock and factor returns.

42Since we fit an AR(1) on AggStockt, the first observation in the bootstrapped sample will
always be AggStock0 in the actual data.
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loadings are the same as the estimated factor loadings for the actual data. Loadings
on characteristics are randomly generated previously.

Next, we simulate size-related variables at the beginning of the second month.
Similar to before, we look at the actual data to identify funds that report data on
TNA for the first time. These will be the new entries to the fund industry. Different
from before, we also have incumbent funds that survive the first month. For these
funds, their TNA evolution, as emphasized in PST, will follow (7) in that innovations
in TNA are correlated with contemporaneous fund returns. We therefore follow (7)
to generate TNA for these funds at the beginning of the second month, using fund
returns from the previous step (i.e., returns realized between time zero and t = 1) and
an independent normal shock that has the same standard deviation as the estimated
equation (7) in the actual data. The regression coefficients in (7) are also the same
as their estimates for the actual data. We record TNA’s for both new entries and
incumbent funds. We generate FundSize for these funds. With the bootstrapped

market capitalization at t = 1 (i.e., ̂AggStock1), we can generate IndusSize.43

We next simulate fund returns that are realized between t = 1 and t = 2. This
is the same as the previous step where we simulate fund returns between t = 0 and
t = 1. After this, we simulate size-related variables at the beginning of the third
month, exactly following the previous step where we simulate these variables at the
beginning of the second month. Hence, we follow the above steps recursively to fill
in the entire panel of fund returns and TNA.

Several features mark our simulation process. First, we follow PST to explicitly
model the dynamics of TNA through (7). As argued in PST, this is the main channel
that creates bias for traditional inference. Second, we take into account the hetero-
geneity in parameters that are fund specific. For example, we allow factor loadings
to mimic their cross-sectional distributions for the actual data. As another example,
we also allow c0i and c1i to be fund specific, in contrast to PST. Third, our simulated
sample provides a realistic description of both the return panel and the TNA panel
if history repeats. In particular, we keep track of fund entries, which would be diffi-
cult to describe if one were to model fund entries as a stochastic process.44 Overall,
we believe that our simulation process incorporates important features of the actual
data while recognizing the sources of uncertainty in the return and TNA generating
process, providing a fair setup to evaluate model performance.

Table B.1 reports our choice of Λ that governs the loadings on fund characteristics.
Our choice of Λ follows our model estimates on the actual data (which we haven’t

43Notice that the simulated IndusSize in our simulation study mimics the time trend and auto-
correlation of the time-series of IndusSize in the actual data. We show that our estimates are still
consistent.

44In our simulated samples, the history of fund entries is always the same as the actual data while
we independently sample the innovations for the aggregate stock market capitalization (through
bootstrap). This implicitly assumes that fund’s entry is independent of the innovations in the
aggregate stock market capitalization. However, this is not key for our simulation results. Our
model still performs well if we do not resample the aggregate stock market capitalization.
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discussed yet, see section 3). To offer some economic interpretations of the model
parameters, µγ,1 = −0.05 means that a 1% annual increase in IndusSize (that is, the
percentage of the size of the mutual fund industry relative to the aggregate market
capitalization of all stocks goes up by 1%) implies a 0.05% (= 0.05 × 1%) decrease
in alpha (per annum) for the average fund in the cross-section, while µγ,2 = −0.003
implies a 0.2% (= log(21/12)×0.003×12) decrease in alpha (per annum) if the average
fund in the cross-section doubles its size over a year. Both effects are economically
significant. However, the impact of scale at the individual fund level is higher than
at the industry level. We offer more detailed interpretations of our model parameters
in the results section.

Table B.1: Parameter Vector (Λ∗) for the Simulated Model

Parameter vector (Λ∗) for the simulated model. We choose pa-
rameter values in Λ that are similar to our estimates based on the
actual data (see Table 4). µγ and σγ are the mean and standard
deviation of the normal distribution from which γi,1’s (γi,2’s) are
drawn from.

Loadings on IndusSizet Loadings on FundSizei,t
(γi,1) (γi,2)

µγ −0.05 −0.003

σγ 0.80 0.003

We can also allow residual correlation in fund returns in our simulations. We
experiment with two correlation schemes. The first scheme assumes a common con-
temporaneous pairwise correlation (i.e., ρ) for the cross-section of return residuals.
We set ρ at 0.2, which we think is a reasonable upper bound on the average pairwise
correlation based on the evidence in Barras et al. (2010) and Harvey and Liu (2018).
The other scheme, which is more realistic, calibrates a structural model to match key
features of the cross-sectional distribution of pairwise residual correlations. We follow
the parameterization of the structural model in Harvey and Liu (2018) to realistically
capture residual correlation.

Table B.2 reports the results of our simulation study. For the loadings on the
common variable IndusSize, both our model labeled AP (alpha predictor) and the
equation-by-equation OLS perform reasonably well. For example, when residuals are
uncorrelated (i.e., ρ = 0), our model estimate of the population mean of the loadings
on IndusSize has a bias of 0.5% (=0.026/5.0) relative to the magnitude of the true
value and the equation-by-equation OLS has a bias of −0.8% (=−0.042/5.0). On
the other hand, for the standard deviation of the population of the loadings, our
model has a bias of -0.7% (=−0.524/80) relative to the magnitude of the true value
and the equation-by-equation OLS has a bias of 1.9% (=1.518/80). Hence, while our
model performs better than the equation-by-equation OLS under all specifications,
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both models seem to perform well. This is not surprising since, unlike FundSize,
innovations in IndusSize are not strongly correlated with fund returns (IndusSize
is a common variable) so the Stambaugh bias does not affect the estimation under
either our model or the equation-by-equation OLS. In addition, there is a large amount
of cross-sectional variation in the loadings on IndusSize as σγ,1 is large relative to
the mean loading (i.e., µγ,1). As a result, by (8) and (9), cross-sectional information
plays a limited role in helping refine the equation-by-equation OLS estimates. This
explains why our model performs similarly to the equation-by-equation OLS.

Turning to the loadings on FundSize, the story is very different. Our model
generates largely unbiased estimate for the mean of the loadings population while
the equation-by-equation OLS is severely biased. For instance, when the simulated
residual correlations mimic the dependence structure among the residuals for the
actual data, our model estimate of the mean of the loadings on FundSize has a bias
of −0.3% (=−0.008/3.0) relative to the magnitude of the true value. In contrast, the
equation-by-equation OLS has a bias of −14% (=−0.412/3.0). As such, it would be
a mistake to use the equation-by-equation OLS to make inference on the impact of
FundSize.
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Table B.2: A Simulation Study: Parameter Estimates for the Loadings
Population

Model estimates in a simulation study. We fix the model parameters at Λ∗ (Table B.1) and
generate D sets of data sample. For each set of data sample, we estimate our model using
our alpha predictor (AP) model and the usual equation-by-equation OLS. ρ is the assumed
level of pairwise correlation for the correlation model that assumes an equal correlation for
each pair of residual series. For a given parameter γ, let γd be the model estimate based on
the d-th simulation run, d = 1, 2, . . . , D. “True” reports the assumed true parameter value
given in Λ∗. “Bias” reports the difference between the average of the simulated parameter
estimates and the true value, that is, (

∑D
d=1 γd)/D − γ. “RMSE” reports the square root

of the mean squared estimation error. “p(10)” reports the 10th percentile of the parameter
estimates and “p(90)” reports the 90th percentile of the parameter estimates. (µγ,1, σγ,1)
and (µγ,2, σγ,2) are the mean and standard deviation of the population of γi,1’s and γi,2’s,
respectively. ρ is the assumed pairwise correlation for the cross-section of return residuals.
“Empirical ρ” corresponds to the parameterization in Harvey and Liu (2018) that models the
cross-sectional distribution of return residuals.

ρ = 0 ρ = 0.2 Empirical ρ

AP OLS AP OLS AP OLS

IndusSizet

µγ,1 (×102) Bias 0.026 −0.042 −0.128 −0.231 −0.183 −0.224
(True = −5.0) RMSE 1.737 1.738 3.068 3.168 2.081 2.074

p(10) −6.714 −6.850 −8.825 −9.151 −7.990 −7.966
p(90) −2.602 −2.691 −2.038 −1.620 −2.503 −2.734

σγ,1 (×102) Bias −0.524 1.518 −0.532 1.711 −0.234 1.921
(True = 80) RMSE 1.257 2.042 1.394 2.306 1.238 2.444

p(10) 77.989 79.877 77.807 80.256 78.365 80.244
p(90) 81.118 83.231 81.153 83.501 81.236 83.801

FundSizei,t

µγ,2 (×103) Bias −0.017 −0.420 −0.022 −0.393 −0.008 −0.412
(True = −3.0) RMSE 0.108 0.527 0.173 0.863 0.124 0.725

p(10) −3.135 −3.841 −3.283 −4.232 −3.175 −4.191
p(90) −2.888 −3.021 −2.784 −2.347 −2.843 −2.697

σγ,2 (×103) Bias −0.192 11.628 −0.177 11.536 −0.182 11.402
(True = 3.0) RMSE 0.218 11.667 0.220 11.580 0.246 11.456

p(10) 2.683 13.436 2.652 13.225 2.616 13.016
p(90) 3.106 15.914 3.018 15.957 3.062 15.903

Why is our model unbiased while the equation-by-equation OLS is biased? To pro-
vide insight, we compare model performance by looking at the fund specific loadings
on IndusSize and FundSize.

Table B.3 reports the results. Focusing on Panel A, not surprisingly, our model
provides more accurate estimates for the loadings on IndusSize and FundSize. The
improvement of our model over the equation-by-equation OLS is substantial for the
loadings on FundSize. For instance, while our model implies a mean absolute de-
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viation that is 60% (=1.814/3.0) relative to the mean loading on FundSize (i.e.,
µγ,2), the equation-by-equation OLS generates a mean absolute deviation of 241%
(=7.236/3).

We next divide the cross-section of funds into groups based on the number of
monthly time periods that are available for each fund, as shown in Panel B (each
group consists of 20% of funds in our sample). Focusing on the loadings on FundSize
corresponding to the equation-by-equation OLS, we see that there is a very large
negative bias for funds that exist for a short time period (e.g., T < 36). The bias
is much smaller (in magnitude) for funds that exist for a longer time period (e.g.,
T > 126). This is related to the Stambaugh bias. In PST, assuming a balanced
panel, they show that the percentage bias for their OLS estimator with fixed effects
ranges from −73% to −8%, depending on the magnitude of the true parameter value.
In our framework, by assuming an unbalanced panel that is consistent with the actual
data, all the funds in our sample have a smaller sample size than what PST assume.
As a result, the Stambaugh bias, which arises in small samples, should be even more
pronounced in our framework. However, this is not what we see from Table B.3. In
particular, for the 40% of funds in our sample that have a sample size no less than
81 months, the percentage bias is lower than −1% (=−0.036/3.0), much smaller in
magnitude than what PST show in their simulation study. This is because we define
FundSize as the log of the industry adjusted fund size, not the dollar size of each fund
(adjusted by the size of the equity market). By doing this, our definition helps kill
the mechanical contemporaneous correlation between a fund’s return and the growth
rate in FundSize, thereby alleviating the Stambaugh bias.45 In fact, for funds that
have more than 81 monthly observations (which account for 40% of our sample), the
equation-by-equation OLS has a smaller percentage bias compared to the proposed
IV method in PST, which has a percentage bias in the range of −2% and −3%.

For funds that exist for a short period time, the variation in industry size is
small and likely swamped by the variation in individual fund size, leading to a strong
Stambaugh bias for the equation-by-equation OLS. However, funds that have a shorter
sample also have a larger standard error for the parameter estimates. For instance,
as shown in Panel B of Table B.3, the averaged OLS standard error for the loading
on FundSize is 18.9× 10−3 for funds that satisfy T < 36 and is 2.4× 10−3 for funds
that satisfy T > 171. In our framework, cross-sectional learning down weights the
importance of funds with more noisy OLS parameter estimates, alleviating the bias
in the OLS estimates for these funds. Following the previous example, based on (8)
and (9), the weight we assign to funds that have T > 171 is 62 (=(18.9/2.4)2) times
the weight we assign to funds that have T < 36. Hence, our framework substantially
(and optimally) over weights funds with a long sample, which, as we discussed before,
are less affected by the Stambaugh bias. Panel B of Table B.3 shows that our model

45For example, in our data for funds with no greater than 36 monthly observations (for which
the Stambaugh bias should be the most severe), the median contemporaneous correlation between a
fund’s return and the growth rate of FundSize is 3.5% for our definition of FundSize, and is 17.9%
under PST’s definition.
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implies roughly unbiased estimate for the loading on FundSize across all groups of
funds categorized by sample size. In fact, the percentage bias for the group of funds
with T < 36, the worst case scenario in our framework, is −1% (=−0.028/3.0), still
lower (in magnitude) than the bias for the IV approach in PST.

Table B.3: A Simulation Study: Parameter Estimates for Individual Fund
Loadings

Model estimates in a simulation study. We fix the model parameters at Λ∗ (Table B.1) and
generate D sets of data sample. For each set of data sample, we estimate our model using our
alpha predictor (AP) model and the usual equation-by-equation OLS. Panel A reports results
on estimation accuracy for the loadings for individual funds. “Mean absolute deviation” is
the averaged (across simulations) mean absolute distance between the estimated loading and
the true loading for the cross-section of funds. p10, p50, and p90 report the averaged (across
simulations) 10-th, 50-th, and 90-th percentile of the mean absolute distance between the
estimated loading and the true loading for the cross-section of funds. Panel B looks at
estimation bias and standard errors for loadings estimates for individual funds. T denotes
the number of monthly observations that is available for a fund. For funds that have a
T that falls within a certain range, “Bias” reports the averaged (across simulations) mean
difference (across funds) between the estimated loading and the true loading; “Avg. Std.
Err.” reports the averaged (across simulations) mean (across funds) standard error for the
estimated loading. All simulations are run under the “Data Depen.” specification in Table
B.2.

Panel A: Estimation Accuracy

IndusSizet FundSizei,t

γi,1 (×102) γi,2 (×103)

AP OLS AP OLS

Mean absolute deviation 7.659 9.317 1.814 7.236
p10 0.741 0.798 0.244 0.377
p50 4.574 5.078 1.407 2.787
p90 18.129 21.675 3.965 19.370

Panel B: Bias and Standard Errors for Number of Observations

Bias 18 6 T < 36 0.173 −0.222 −0.028 −1.385
36 6 T < 81 0.205 0.224 0.009 −0.258
81 6 T < 126 −0.016 −0.098 −0.022 −0.116
126 6 T < 171 0.059 0.050 −0.012 −0.036
171 6 T −0.018 −0.012 −0.011 −0.023

Avg. Std. Err. 18 6 T < 36 2.247 18.881 2.641 18.922
36 6 T < 81 3.029 14.523 2.222 8.661
81 6 T < 126 2.412 8.127 1.867 4.278
126 6 T < 171 2.084 6.032 1.605 2.782
171 6 T 1.996 4.053 1.489 2.364
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D Additional Results

D.1 Portfolio Sorts

Table C.1: Portfolio Sorts Based on Loadings on IndusSize, Fund Sizes and
Past Performances

Annualized alphas for strategies that sort the cross-section of funds based on loadings on
IndusSize, fund sizes, and past performances. Using a rolling five-year window, we estimate
our model to obtain the cross-section of loadings on IndusSize. We then sort funds into differ-
ent groups based on the loadings, fund sizes, and past performances. We use conditional sorts
to first sort funds into size terciles. Within each size tercile, we sort funds into three groups
based on past performances. Finally, within each group for past performance, we sort funds
into three groups based on the loadings. A low value of loading means the fund is sensitive to
decreasing returns to scale. Past performance is measured as the average fund excess return in
the past two years. Our sample is from 1991 to 2011. We start sorting in 1996 to have the initial
five-year window to estimate our model. Panel A subtracts the market excess return from the
fund excess return. Panel B reports fund alphas based on the Carhart (1997) four-factor model.

Panel A: Fund Returns Adjusted by Market Return

Fund’s TNA

Small Median Large
Loadings αlow αmed αhigh αlow αmed αhigh αlow αmed αhigh All

Low −3.895 0.091 1.940 −1.523 −0.053 0.624 −1.440 −1.054 0.719 −0.510
2 −2.340 −0.424 2.303 −2.668 −1.240 1.014 −3.208 −1.424 0.192 −0.866

High −1.012 1.042 4.558 −1.265 0.047 3.487 −2.475 −0.563 2.189 0.668

High - Low 2.883 0.951 2.619 0.258 0.099 2.863 −1.036 0.491 1.469 1.178
(t-stat) (1.89) (0.91) (2.17) (0.26) (0.12) (2.77) (-1.34) (0.58) (1.36) (1.93)

Panel B: Fund Returns Adjusted by 4-Factor Model

Fund’s TNA

Small Median Large
Loadings αlow αmed αhigh αlow αmed αhigh αlow αmed αhigh All

Low −4.277 −0.238 0.673 −1.708 −0.763 −1.075 −1.338 −1.656 −0.728 −1.234
2 −2.784 −0.599 0.707 −2.983 −1.396 −0.534 −2.981 −1.348 −1.228 −1.461

High −1.522 0.545 3.065 −1.597 −0.388 1.867 −2.130 −0.281 0.836 0.044

High - Low 2.755 0.782 2.392 0.111 0.375 2.942 −0.792 1.376 1.564 1.278
(t-stat) (1.77) (0.75) (2.13) (0.12) (0.44) (2.87) (-1.02) (2.00) (1.44) (2.03)
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Table C.2: Portfolio Sorts Based on Loadings on FundSize, Fund Sizes and
Past Performances

Annualized alphas for strategies that sort the cross-section of funds based on loadings on
FundSize, fund sizes, and past performances. Using a rolling five-year window, we estimate our
model to obtain the cross-section of loadings on FundSize. We then sort funds into different
groups based on the loadings, fund sizes, and past performances. We use conditional sorts to
first sort funds into size terciles. Within each size tercile, we sort funds into three groups based
on past performances. Finally, within each group for past performance, we sort funds into three
groups based on the loadings. A low value of loading means the fund is sensitive to decreasing
returns to scale. Past performance is measured as the average fund excess return in the past
two years. Our sample is from 1991 to 2011. We start sorting in 1996 to have the initial five-
year window to estimate our model. Panel A subtracts the market excess return from the fund
excess return. Panel B reports fund alphas based on the Carhart (1997) four-factor model.

Panel A: Fund Returns Adjusted by Market Return

Fund’s TNA

Small Median Large
Loadings αlow αmed αhigh αlow αmed αhigh αlow αmed αhigh All

Low −2.971 0.467 4.303 −0.734 0.534 2.783 −1.728 0.034 1.789 0.497
2 −2.251 −0.118 2.528 −2.170 −0.772 1.043 −2.907 −1.112 1.045 −0.524

High −1.874 0.454 1.912 −2.597 −1.039 1.307 −2.488 −1.969 0.279 −0.668

Low - High −1.097 0.013 2.390 1.863 1.573 1.476 0.760 2.003 1.511 1.166
(t-stat) (-0.93) (0.01) (1.81) (2.17) (1.94) (1.63) (1.21) (3.05) (1.92) (2.42)

Panel B: Fund Returns Adjusted by 4-Factor Model

Fund’s TNA

Small Median Large
Loadings αlow αmed αhigh αlow αmed αhigh αlow αmed αhigh All

Low −3.597 0.132 2.695 −0.957 −0.217 0.829 −1.316 −0.310 0.225 −0.280
2 −2.496 −0.357 0.876 −2.558 −1.266 −0.530 −2.973 −1.254 −0.558 −1.235

High −2.363 0.016 0.807 −2.823 −1.097 −0.035 −2.156 −1.728 −0.776 −1.128

Low - High −1.234 0.117 1.888 1.866 0.880 0.863 0.840 1.418 1.001 0.849
(t-stat) (-1.02) (0.12) (1.40) (2.17) (1.22) (1.06) (1.36) (2.55) (1.30) (1.84)
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